GXSWSwitching Instruments

GX7016 GENASYS Switching Subsystem User's Guide

Last Updated: February 26, 2015

Safety and Handling

Each product shipped by Marvin Test Solutions is carefully inspected and tested prior to shipping. The shipping box provides protection during shipment, and can be used for storage of both the hardware and the software when they are not in use.

The circuit boards are extremely delicate and require care in handling and installation. Do not remove the boards from their protective plastic coverings or from the shipping box until you are ready to install the boards into your computer.

If a board is removed from the computer for any reason, be sure to store it in its original shipping box. Do not store boards on top of workbenches or other areas where they might be susceptible to damage or exposure to strong electromagnetic or electrostatic fields. Store circuit boards in protective anti-electrostatic wrapping and away from electromagnetic fields.

Be sure to make a single copy of the software CD for installation. Store the original CD in a safe place away from electromagnetic or electrostatic fields. Return compact disks (CD) to their protective case or sleeve and store in the original shipping box or other suitable location.

Warranty

Marvin Test Solutions products are warranted against defects in materials and workmanship for a period of 12 months. Marvin Test Solutions shall repair or replace (at its discretion) any defective product during the stated warranty period. The software warranty includes any revisions or new versions released during the warranty period. Revisions and new versions may be covered by a software support agreement. If you need to return a board, please contact Marvin Test Solutions Customer Technical Services Department via http://www.marvintest.com/magic/ - the Marvin Test Solutions on-line support system.

If You Need Help

Visit our web site at http://www.marvintest.com for more information about Marvin Test Solutions products, services and support options. Our web site contains sections describing support options and application notes, as well as a download area for downloading patches, example, patches and new or revised instrument drivers. To submit a support issue including suggestion, bug report or questions please use the following link: http://www.marvintest.com/magic/

You can also use Marvin Test Solutions technical support phone line (949) 263-2222. This service is available between 8:30 AM and 5:30 PM Pacific Standard Time.

Our address (check our website for latest address): Marvin Test Solutions, 1770 Kettering, Irvine, CA 92614, USA.

Disclaimer

In no event shall Marvin Test Solutions or any of its representatives be liable for any consequential damages whatsoever (including unlimited damages for loss of business profits, business interruption, loss of business information, or any other losses) arising out of the use of or inability to use this product, even if Marvin Test Solutions has been advised of the possibility for such damages.

Copyright

Copyright © 2003-2015 by Marvin Test Solutions, Inc. All rights reserved. No part of this document can be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Marvin Test Solutions.

Trademarks

ATEasy®, CalEasy, DIOEasy®, DtifEasy, WaveEasy	Marvin Test Solutions Inc.
C++ Builder, Delphi	Embarcadero Technologies Inc.
LabView, LabWindowstm/CVI	National Instruments
Microsoft Developer Studio, Microsoft Visual C++, Microsoft Visual Basic, .NET, Windows 95, 98, NT, ME, 2000, XP, VISTA, Windows 7 and 8	Microsoft Corporation

All other trademarks are the property of their respective owners.

Table of Contents

Safety and Handling	1
Warranty	1
If You Need Help	1
Disclaimer	1
Copyright	1
Trademarks	2
Chapter 1 - Introduction	1
Manual Scope and Organization	1
Manual Scope	1
Manual Organization	1
Conventions Used in this Manual	1
Chapter 2 - Overview	3
Introduction	3
Description	3
Features	3
Configuration	4
Switching Subsystem Components	4
GX7016 – PXI Chassis	5
GX6256 - Low Frequency Multiplexer PXI (LF)	6
GX6192 - High Frequency Multiplexer PXI Board (HF)	7
GX6032 - Rear Transition Module (RTM)	8
GX6009 – Switching Router Module (SR)	9
Architecture	10
GX7016	10
GX6256 (LF)	11
GX6192 (HF)	12
GX6032 (RTM)	14
GX6009 (SR)	15
Specifications	16
Virtual Panel	18
Virtual Panel - LF Slot Page	19
Virtual Panel - HF Slot Page	20
Virtual Panel - Rear Transition Module (RTM) Page	22
Virtual Panel - Switch Router (SR) Page	23
Chapter 3 - Installation and Connections	27

Getting Started	27
Packing List	27
Unpacking and Inspection	27
System Requirements	27
Installation of the GXSW Software	28
Setup Maintenance Program	28
Overview of the GXSW Software	29
Installation Folders	29
Configuring Your PXI System using the PXI/PCI Explorer	30
Board Installation	31
Before you Begin	31
Electric Static Discharge (ESD) Precautions	31
Installing a PXI Board	31
Plug & Play Driver Installation	33
Removing a Board	33
Connectors and Jumpers	34
GX6256	34
GX6192	35
Connectors and Accessories	36
GX6256	36
GX6192	36
GX6256 J2 Connector	37
GX6256 J3 Connector	39
GX6256 J7 Connector	41
GX6192 J2 Connector	42
GX6192 J3 Connector	44
GX6192 P1 Connector	46
GX6192 P2 Connector	46
Chapter 4 - SwitchEasy Software	47
SwitchEasy Overview	47
SwitchEasy Panel	48
Status Page	48
Pin Maps Page	50
Exclusions Page	51
SwitchEasy Base Commands	52
SwitchEasy Command Reference	52

SwitchEasy Connect/Disconnect Commands	55
SwitchEasy Commands Conventions	56
Programming Examples	56
Mapping pins and pin groups	56
Making a connection	56
Disconnecting.	57
Chapter 5 - Function Reference	59
Introduction	59
GX6256/GX6192/GX6009/GX6032 Functions	60
Gx6256BITAbort	62
Gx6256BITGetStatus	63
Gx6256BITRun	64
Gx6256BleedRelayClose	65
Gx6256BleedRelayGetState	66
Gx6256BleedRelayOpen	68
Gx6256GetBoardSummary	69
Gx6256GetBoardType	70
Gx6256GetRelayCount	71
Gx6256GetRelayStates	72
Gx6256Initialize	73
Gx6256InitializeVisa	75
Gx6256MatrixClose	76
Gx6256MatrixGetChannel	78
Gx6256MatrixOpen	80
Gx6256MatrixInputSelectorClose	82
Gx6256MatrixInputSelectorGetChannel	83
Gx6256MatrixInputSelectorOpen	84
Gx6256MatrixReset	85
Gx6256MuxClose	86
Gx6256MuxGetChannel	88
Gx6256MuxOpen	90
Gx6256MuxReset	92
Gx6256MuxGetSelectorMode	93
Gx6256MuxSetSelectorMode	95
Gx6256Panel	97
Gx6256PioGetOutputData	98

vi GX7016 User's Guide

In	ıdex	. 115
	GxSWGetErrorString	110
	Gx6256SrBusOpen	109
	Gx6256SrBusGetChannel	
	Gx6256SrBusClose	107
	Gx6256RtmMatrixOpen	106
	Gx6256RtmMatrixGetChannel	105
	Gx6256RtmMatrixClose	104
	Gx6256Reset	103
	Gx6256PioSetOutputEnable	102
	Gx6256PioSetOutputData	101
	Gx6256PioReadInput	100
	Gx6256PioGetOutputEnable	99

Chapter 1 - Introduction

Manual Scope and Organization

Manual Scope

This manual provides all the information necessary for installation, operation, and maintenance of the GX7016 chassis, and the switching boards: GX6256, GX6192, GX6009, and GX6032. These components are part of the GX7016 digital subsystem that is part of the TS-323/GENASYS test system. The manual also covers the GXSW software package that includes the GX6256 and GX6192 driver. In addition to the GXSW software components, this manual also described the SwitchEasy software that is based on the GXSW driver and provides a rule-based, pin mapping and higher level access to the switching subsystem. SwitchEasy software is described later in this manual. This manual assumes the reader has a general knowledge of PC based computers, Windows operating systems, and a general knowledge of modular test equipment.

Manual Organization

This manual is organized in the following manner:

Chapter	Content
Chapter 1 – Introduction	Introduces the GX7016 switching subsystem manual and shows warning conventions used in the manual.
Chapter 2 – Overview	Provides the GX7016 switching subsystem list of features, description of the board, architecture, specifications and the virtual panel description and operation.
Chapter 3 –Installation and Connections	Provides instructions about how to install a GX6256 and GX6192 board and the GXSW software.
Chapter 4 –SwitchEasy Software	Provides an overview of the SwitchEasy software driver and panel
Chapter 5 – Functions Reference	Provides a list of the GXSW driver functions for the GX6256, GX6192, GX6009, and GX6032. Each function description provides syntax, parameters, and any special programming comments.

Conventions Used in this Manual

Symbol Convention	Meaning
\	Static Sensitive Electronic Devices. Handle Carefully.
STOP	Warnings that may pose a personal danger to your health. For example, shock hazard.
•	Cautions where computer components may be damaged if not handled carefully.
TIP	Tips that aid you in your work.

Formatting Convention	Meaning
Monospaced Text	Examples of field syntax and programming samples.
Bold type	Words or characters you type as the manual instructs. For example: function or panel names.
Italic type	Specialized terms. Titles of other references and information sources. Placeholders for items you must supply, such as function parameters

Chapter 2 - Overview

Introduction

The Marvin Test Solutions GX7016 GENASYS switching subsystem provides the following features

6U PXI chassis with integrated MAC Panel SCOUT receiver

20 slot 6U PXI chassis supports GENASYS switching subsystem modules

Supports over 4000 multiplexed, hybrid pin connections

Supports up to 288 digital channels when integrated with a digital subsystem

Description

A component of the GENASYS platform, the GX7016 switching subsystem offers a new level of high performance, high density switching for board and system level functional test. Based on the 6U PXI architecture, the GX7016 incorporates a modular switch matrix and multiplexer architecture which supports up to 4608 multiplexed, hybrid I/O pins. Up to 128 external resources can be connected to any of the test system's receiver I/O pins via a high performance, internal 16 wire matrix bus. For digital test capability, the GX7016's switching subsystem can be connected to a digital subsystem such as Marvin Test Solutions' GX5960 digital subsystem, providing hybrid pin capability for each multiplexed I/O pin. Up to 288 digital channels are supported by the switching subsystem.

GX7016 chassis incorporates the MAC Panel 6U SCOUT receiver. The SCOUT receiver offers a reliable and high performance method to connect the switch modules to a mass interconnect receiver, minimizing the need for cable assemblies. The SCOUT receiver is a "pull-through" design, with each switch card providing a "cable-less" connection to the receiver connectors, – eliminating the need for cable harnesses and the associated reliability issues that come with cabled solutions. The result is a system interconnect design that is cost effective, reliable, and maintainable. The modular design of the SCOUT also allows for the use of a broad range of receiver connectors including high density, high current, and coaxial types. The 6U SCOUT receiver can accommodate up to 21 connector slots and over 8000 connections when fully populated.

Features

The GX7016 is a 20-slot 6U PXI chassis that can accommodate up to 19 switching or instrument cards as well as a remote PXI bus interface such as the MXI-4. In addition to supporting all of the PXI-1 resources, the GX7016's PXI backplane provides an internal, high performance, 16 wire, and analog bus via the backplane's P5 connectors. Each of the GENASYS switching cards connects to this internal 16 wire bus, providing the ability to route signals from an external instrument to any of the receiver's interface connections.

System power for the GX7016 is provided by a 755 watt power supply. Forced-air cooling for the chassis is provided by a four (4) 79 CFM fans mounted under the card cage—providing positive airflow per the PXI specification. This configuration provides the optimum cooling for the chassis regardless of the type or number of instruments or switch cards used. Additional cooling is provided for the system power supply. This cooling configuration, in conjunction with air plenums within the chassis, provides airflow for all module slots per the PXI specification and requires no additional rack space for inlet or outlet air.

The GX7016 chassis supports the monitoring of slot temperatures and system power supply voltages as well providing the ability to program or map each PXI trigger line from one PCI segment to another. In addition, the user can program the temperature monitoring function for specific warning and shutdown limits. All user specific setups can be stored in non-volatile memory as a user configuration and can be used as the default setup for normal chassis operation.

Configuration

The GX7016's Slot 1 is dedicated for the remote system controller. A PXI Star Trigger controller, any PXI or cPCI instrument or a GENASYS switching module can be used in slot 2. Slots 3-15 support the PXI Star Trigger, any PXI or cPCI instrument or a GENASYS switching module. Slots 16-20 accommodate a PXI or cPCI instruments without the Star Trigger or a GENASYS switching module.

Switching Subsystem Components

The modular architecture of the GX7016 allows the switching subsystem to support a wide range of configurations and capabilities. Input analog signal routing is supported by the GX6032, a matrix switch module which is located on the rear of the chassis. This module is configured as 32×16 matrix and supports up to 32 inputs which can be connected to the GX7016's internal 16 wire bus. Up to (4) of these modules can be supported by the system. The base system is supplied with (1) GX6032.

Signal routing from the internal backplane to the receiver interface is supported by the GX6256 MultiMatrixTM switch card which is an extended 6U PXI module with direct connection to the receiver interface. The module combines a 16x16 matrix with (16) 2:16 multiplexers. The result is a switch card that can support up to 256 multiplexed signals from the 16 wire bus. Additionally, a secondary bus is included, providing the ability to route (2) resources to each group of 16 I/O pins within a mux group. The GX6256 also supports the ability to select an analog or digital resource (GX5960 digital subsystem) for each of the 16 inputs/ outputs.

For higher performance analog switching applications, the GX7016 can be configured with the GX6192 HF MultiMatrix $^{\text{TM}}$ switch cards which combines a 16x16 matrix with (16) 1x12 multiplexers, providing a total of 192 high performance I/O pins at the receiver interface. HF resources are connected directly to the GX6192 via an external connector. In addition signals can be routed to / from the HF switch card to other switch cards in the system via the system's internal 16 wire bus.

The GX7016 switching subsystem includes the following components:

GX7016-6U PXI chassis with special backplane used for plugging in the SR, RTM in addition to the PXI boards LF and HF

GX6009 - Switching Routers modules (SR)

GX6032 - Rear Transition modules (RTM)

GX6192 - High Frequency multiplexer PXI boards (HF)

GX6256 - Low Frequency multiplexer PXI boards (LF).

In addition to the GX6256 and GX6192 switching function, they are also used control an RTM and an SR that are mounted to backplane since these card do not sit on the PXI bus.

GX7016 - PXI Chassis

The GX7016 switching sub system includes a PXI chassis with a special backplane that includes Switching Routers (SR GX6009), Rear Transition Modules (RTM GX6032), GX6192 (HF) and GX6256s (LF). The GX6256 and GX6192 can control an RTM and an SR that are mounted to backplane.

Figure 2-1: GX7016 Genasys Switching Chassis

GX6256 - Low Frequency Multiplexer PXI (LF)

The GX6256 Low Frequency multiplexer 6U PXI card has sixteen 2x16 switching groups connected to 256 channels tied to selectors. Each channel has a primary path and a secondary path. The primary path is designed for optimum performance while the secondary path is intended to be used for DC signal.

The board consists of a multiplexer, matrix and selectors. The GX6256 connects to 16 analog signals through the backplane and to 16 digital signals through a connector in the bottom. Input selectors select the analog or digital input for each multiplex group. Each group routs this signal to one of sixteen channels that are connected to the front connectors.

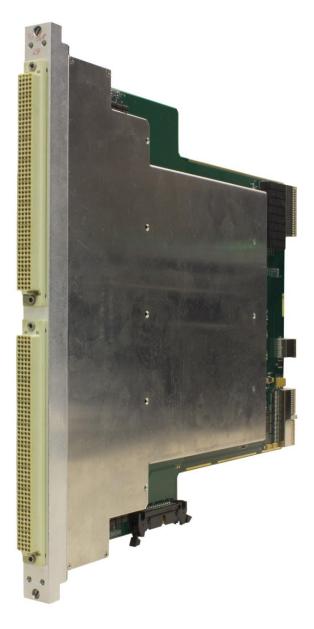


Figure 2-2: GX6256 Low Frequency Mux and Matrix board

GX6192 - High Frequency Multiplexer PXI Board (HF)

The GX6192 is a High Frequency 6U PXI card derivative of the GX6256 with several changes in architecture. The GX6192 provides the user with the ability to connect and interface 16 resources to 192 UUT connections. The board consists of sixteen 1x12 multiplexer groups, eight 4x8 matrices, sixteen 2:2 selectors, and sixteen 1:4 input selectors. The GX6192 connects to 16 analog signals bus through a connector in the back. Each multiplexer group routes its signals to one of sixteen channels that are connected to the front connectors.

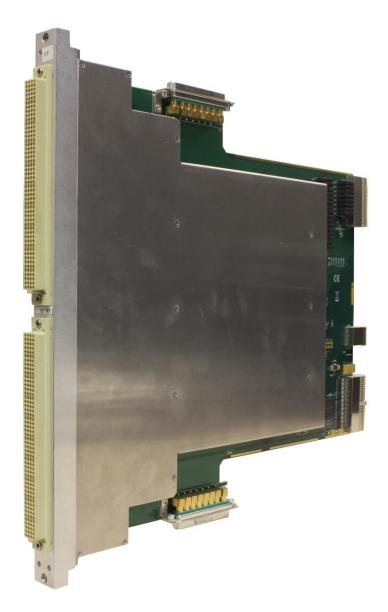


Figure 2-3: GX6192 High Frequency Mux and Matrix board

GX6032 - Rear Transition Module (RTM)

The GX6032 Rear Transition Module (RTM) connects to the back side of the GX7016 backplane. The RTM is designed to connect up to 32 external instrument inputs to the backplane's 16 global bus lines via a 32x16 matrix. The RTM is controlled by an accompanying GX6256 or GX6192 board which is connected to the PXI slot adjacent to the RTM.

Figure 2-4: GX6032 Rear Transition Module (RTM)

GX6009 - Switching Router Module (SR)

The GX6009 Switching Router module (SR) connects up to 9 switching cards (GX6256 or GX6192) together across the backplane via the global us lines. The GX7016 switching subsystem contains two GX6009 switching routers which can be connected together in order to connect the global bus across up to 18 slots.

Figure 2-5: GX6009 Switch Router (SR)

Architecture

GX7016

The Genasys switching sub-system has four main components: backplane, MultiMatrixTM switching cards, Switching Routers (SRs), and Rear Transition Modules (RTMs). Figure 2-6 describes the block diagram of the Genasys switching sub-system. Each component is shown in a different color.

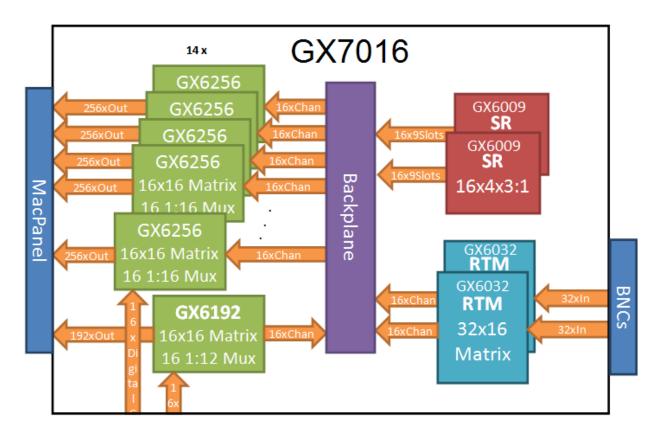
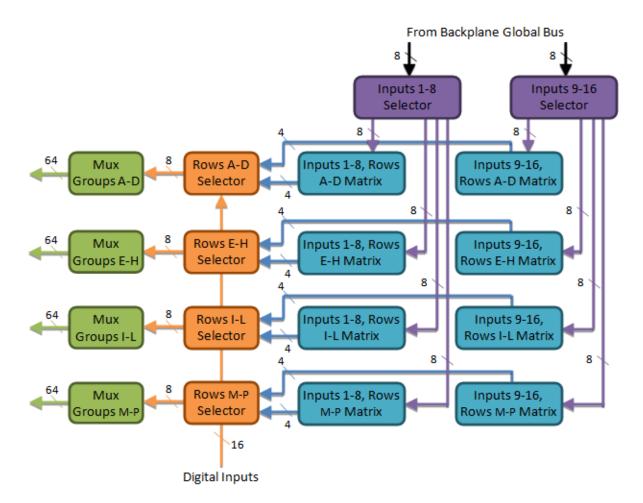


Figure 2-6: GX7016 Genasys Switching Sub-System Block Diagram

- The MultiMatrix[™] switching cards are used to connect the UUT to the system resources through a MacPanel interface. These cards combine multiplexer and matrix architectures to route high frequency (HF), low frequency (LF), and digital signals to and from the UUT. There are two types of cards. The GX6192 HF Switching and the GX6256 LF Switching. Up to 18 cards can be install in a system. Nominal configuration is one GX6192 and fourteen GX6256 cards.
- The switching routers are routing the 16 between the different slots while keeping stubs length to a minimum. Each SR supports nine slots; 2-10 and 11-19.
- The rear transition modules connect the LF system resources to the switching sub-system. Each RTM supports 32 input channels that it can route to any of the 16 global bus signals.
- The backplane is a special PXI backplane with provision to support up to four RTMs, two SRs and up to 18 MultiMatrixTM switching cards.


GX6256 (LF)

The GX6256 comprises of sixteen 1:4 input selectors, eight 4x8 matrices, sixteen 3:2 selectors, and sixteen 2x16 multiplexer groups connected to 256 channels. The switch matrix is essentially a 16x16 matrix implemented as eight 4x8 matrices to reduce stubs length. The row selector and input selector help in facilitating this architecture.

In order to reduce stubs length, the actual implementation divides the group to two sets of eight channels each. Channels 1-8 are the 'Lo' channels and 9-16 are the 'Hi' channels. Another feature implemented in the design is a Build-In Test circuit (BIT). By connecting a pull-up and a level sensor to one input of a pair, and a pull down to the other input, the activation of all the groups' relays can be verified.

Figure 2-7 describes the switching sections of the GX6256. Each section is shown in a different color.

- There are eight 4x8 switch matrices. The matrices columns are routed to the input channels and the rows are routed to multiplexer groups via the selectors.
- The input selector switches an Input channel from the global switching bus in the backplane to one of four groups of rows: A-D, E-H, I-L, M-P. Figure 4 includes a logic schematic of an input selector.
- The row selector switches a pair of multiplexer groups to one of two sets of columns: 1-8 or 9-16 or to a digital input. Figure 2-8 includes a logic schematic of a row selector. The row selector can also connect the row to the BIT circuit.
- The multiplexer has 16 switching groups, A-P. Each group has 16 output channels. In order to reduce stubs length, the actual implementation divides the group to two sets of eight channels each. Channels 1-8 are the 'Lo' channels and 9-16 are the 'Hi' channels.

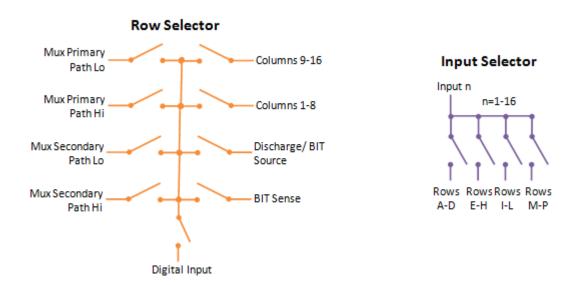


Figure 2-7: Block Diagram of the Switching Sections of the GX6256

Figure 2-8: Schematic Diagram for Selectors

GX6192 (HF)

The GX6192 comprises of sixteen 1:4 input selectors, eight 4x8 matrices, sixteen 2:2 selectors, and sixteen 1x12 multiplexer groups connected to 192 channels. The switch matrix is essentially a 16x16 matrix implemented as eight 4x8 matrices to reduce stubs length. The selector and input selector help in facilitating this architecture.

Figure 2-9 describes the switching sections of the GX6192. Each section is shown in a different color.

- There are eight 4x8 switch matrices. The matrices columns are routed to the input channels and the rows are routed to multiplexer groups via the selectors.
- The input selector switches an Input channel to one of four groups of rows: A-D, E-H, I-L, M-P. Figure 2-9 includes a logic schematic of an input selector.
- The row selector switches a multiplexer group to one of two sets of columns: 1-8 or 9-16. Figure 2-10 includes a logic schematic of a row selector. The row selector can also connect the row to the corresponding global bus line in the backplane.
- The multiplexer has 16 switching groups, A-P. Each group has 12 output channels. In order to reduce stubs length, the actual implementation divides the group to two sets of six channels each. Channels 1-6 are the 'Lo' channels and 7-12 are the 'Hi' channels.

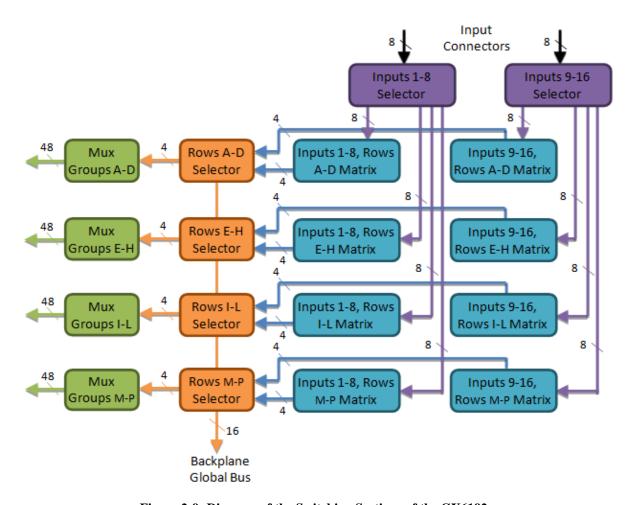


Figure 2-9: Diagram of the Switching Sections of the GX6192

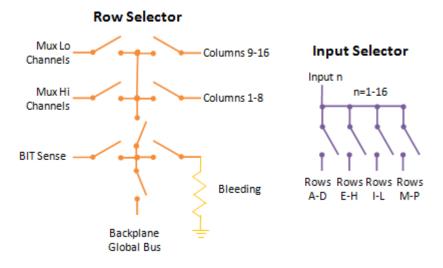


Figure 2-10: Schematic Diagram for Selectors

GX6032 (RTM)

The RTM comprises of 32 1:2 input selectors, 16 4x8 matrices, and 16 1:8 selectors. The switch matrix is essentially a 32x16 matrix implemented as 16 4x8 matrices to reduce stubs length. The row selector and input selector help in facilitating this architecture. Figure 2-11 describes the switching sections of the GX6032. Each section is shown in a different color.

- There are 16 4x8 switch matrices. The matrices columns are routed to the input channels and the rows are routed to the global bus via the selectors.
- The input selector switches an Input channel from a BNC connector to one of two groups of columns: 1-8, 9-16. These numbers are related to the global bus signals. Figure 2-12 includes a logic schematic of an input selector.
- The column selector switches a global bus signal to one of eight sets of rows: 1-4, 5-8, 9-12, 13-16, 17-20, 21-24, 25-28 or 29-32. These numbers are related to the input channels. Figure 2-12 includes a logic schematic of a row selector.

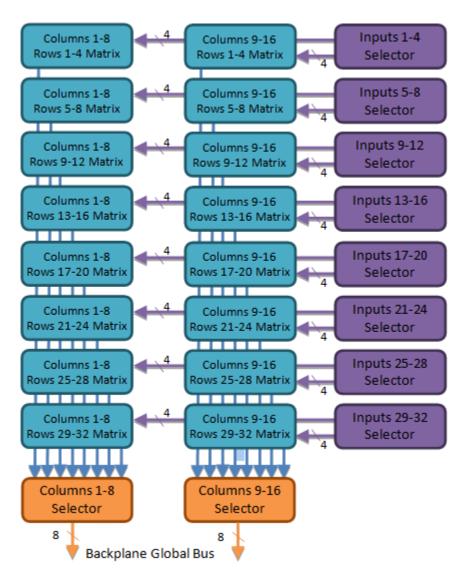


Figure 2-11: Block Diagram of the Switching Sections of the RTM

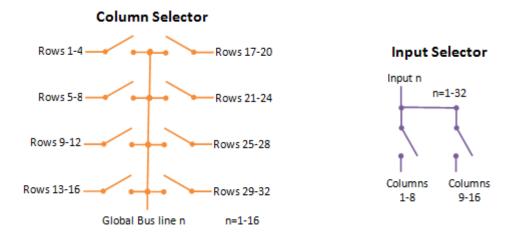


Figure 2-12: Schematic Diagram for RTM Selectors

GX6009 (SR)

The Switching router routes the 16 lines of the global bus between the slots. Each one of the bus lines routing consists of four switching groups, with four relays each. Three groups are slot switching groups and one is the common switching group. Figure 2-13 shows a schematic of one bus line implementation in the SR. Three of the relays in a slot group are connected to slots and the fourth is connected to the common group. Three of the relays in the common group are connected to slot groups and the fourth is connected to the other SR board.

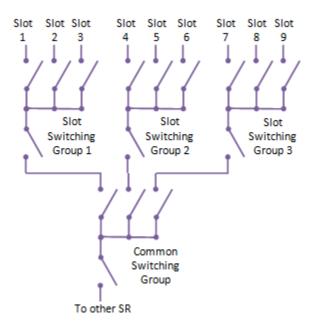


Figure 2-13: Schematic Diagram for One Bus Signal of the Switching Router

Specifications

The following table outlines the specifications of the GX6256/GX6192/GX6032/GX6009 switching cards:

Switching Specifications		
GX6032 Switch Card	Configuration: 32 x16 Inputs: 32 to 128 (4 switch cards)	
GX6256 LF Switch Card	Configuration: 16 x16 matrix with 2 to 1 selector, (16) 2:16 multiplexers Inputs: 16 internal analog bus and 16 digital Outputs: 256	
GX6192 HF Switch Card	Configuration: 16 x 16 matrix with (16) 1:12 multiplexers Inputs: 16 external analog inputs or 16 internal analog bus Outputs: 192	
Relay Specifications	Max AC pk or DC voltage 170 V Max DC or AC pk carry current: 1A Max DC or AC pk switching current: 0.5A Max. contact rating:: 10 W	
Signal Bandwidth		
Input to Output (input switch card to LF switch card output)	> 20 MHz	
HF Switch Card (external input to output)	> 100 MHz	
I/O Connections		
GX6032 Switch Card	32 coaxial connections (Positronics BD8W8F85R70T0/AA)	
GX6256 Switch Card	Receiver: Dual 200 pin connector Digital I/O: 34 pin, dual row latched header	
GX6192 Switch Card	Receiver: Dual 200 pin connector Digital I/O: 34 pin, dual row latched header External I/O: 16 coaxial connections (Positronics BD8W8F85R70T0/AA)	

The following table outlines the specifications of the GX7016 Chassis:

Chassis Specifications		
Input AC Power	90 to 264 VAC, 12 A max (PFC) 47 to 63 Hz	
Total Available DC Power	755 W	
+5 V +3.3 V +12 V -12 V Note: Total output power cannot exceed 755 W.	60 A (max) 60 A (max) 30 A (max) 5 A (max)	
Power Supply Monitoring	Monitored voltages: 3.3, 5, +12, -12, VIO value Accuracy: ± 2% of reading	

Temperature Monitoring	Per slot monitoring, 1 reading/sec/slot 4 second moving average value User selectable alarm criteria:
	Maximum slot temperature
	Average slot temperature
	Accuracy: ± 2 °C Default warning and shutdown limits: +50 °C & +70 °C Warning and shutdown limits programmable via software driver Status: Query via software driver and audible alarm for a warning limit condition
PXI Triggers	Slots: 2 – 20 Number: 8 per segment Software controlled segment mapping supports:
	Isolate a trigger line within a segment
	Map a trigger line left to right
	Map a trigger line right to left
PXI Clock	Integrated 10 MHz PXI clock with auto-detect function. Presence of an external 10 MHz PXI clock will disable the internal clock. PXI clock is distributed to all peripheral slots.
	10 MHz PXI clock accuracy: ±100 ppm
	External input: Rear panel (TTL compatible) or via timing slot
	Output: Rear panel, (TTL compatible)
Slots	20 PXI or cPCI Slots (19 instruments max)
Weight (core system)	61 lbs
Overall Dimensions	10U (17.5") H x 19" W x 24" D
Cooling	Four 79 CFM fans for system cooling. Integrated temperature monitoring via an on-board microcontroller with audible and software notification when preset temperature limits are exceeded. Fan speed control and monitoring is automatic and can be controlled / monitored via the GxChassis software.

The following table outlines the environmental specifications of the switching subsystem:

Environmental Specifications	
Operating	0 °C to +50 °C
Storage	-20 °C to +60 °C
Relative Humidity (operating)	5% to 80% RH,non-condensing
Relative Humidity (non-operating)	5% to 95% RH,non-condensing
Altitude (operating)	Up to 2000 M
CE Compliance	EN61010-1 (pending) EN61326 (pending)

Virtual Panel

The GXSW software includes a virtual panel program, which provides full access to the various configuration settings and operating modes. To fully understand the front panel operation, it is best to become familiar with the functionality of the board.

To open the virtual panel application, select GX6256 Panel from the Marvin Test Solutions, GXSW menu under the **Start** menu. The GX6256/GX6192/GX6032/GX6009 virtual panel opens as shown here:

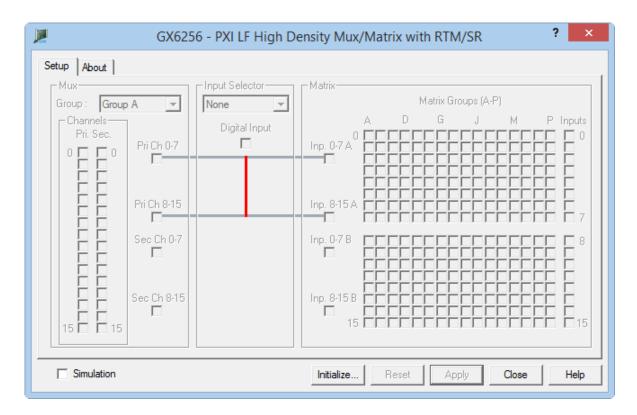


Figure 2-14: Virtual Panel - Uninitialized

Simulation – Selects simulation mode. When the check box is checked when the **Initialize** button is clicked, the panel will operate in simulation mode. If the check box is not checked when the **Initialize** button is clicked, the panel will control actual hardware.

Initialize – Scans the current system for any components of the GX7016 switching sub system (GX6256, GX6192, GX6009, and GX6032) and initializes each one. The current settings of the each device will not change after calling initialize. The panel will reflect the current settings of each device.

Reset – Resets the device settings of the device that corresponds to the currently active page, to their default state.

Apply – Applies changed settings to the board.

Close – Closes the panel. Closing the panel **does not affect** the board settings.

Help – Opens the on-line help window. In addition to the help menu, the caption shows a What's This Help button (?) button. This button can be used to obtain help on any control that is displayed in the panel window. To displays the What's This Help information click on the (?) button and then click on the control – a small window will displays the information regarding this control.

Virtual Panel - LF Slot Page

After the board is initialized the panel is enabled and will display the current setting of the board. The following picture shows the **LF Slot Page**, **2-LF** (LF PXI card that is installed on PXI Slot #2) settings:

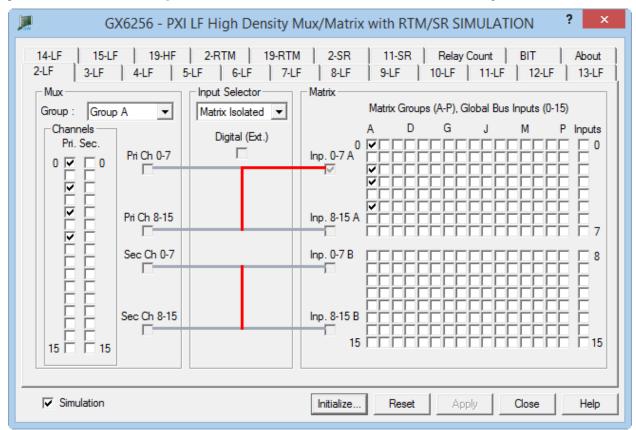


Figure 2-15: Virtual Panel – LF (GX6256) Page

The following controls are shown:

Mux Group Selection (combo box): Set/Displays the currently selected Mux Group

Channels (check boxes): Displays the current relay setting (closed or open). When a box in the matrix is checked, the relay in that row/column is closed. Similarly, unchecked boxes mean relays are open.

Input Selector (combo box): Sets/Displays the currently selected input selector mode

- None: The Mux, Matrix, and external lines are not connected to each other.
- Matrix Only: The Mux and Matrix are allowed to connect but the external lines are disconnected.
- Ext. Only: The Mux and the external lines are allowed to connect to each other.
- Matrix and Ext.: The Mux is allowed to connect to the Matrix and external lines.
- Matrix Isolated: The Mux is not allowed to connect to the selector, effectively making it isolated from the rest of the board.

Digital (Ext.) (check box): Displays the state of the connection between the digital external input and the input selector

Pri Ch 0-7 (check box): Displays the state of the connection between the primary mux low channels to the input selector

Pri Ch 8-15 (check box): Displays the state of the connection between the primary mux high channels to the input selector

Sec Ch 0-7 (check box): Displays the state of the connection between the secondary mux low channels to the input selector

Sec Ch 8-15 (check box): Displays the state of the connection between the secondary mux high channels to the input selector

Inp. Ch 0-7 (check box): Displays the state of the connection between the matrix low channels to the input selector

Inp. Ch 8-15 (check box): Displays the state of the connection between the matrix high channels to the input selector

Matrix (check boxes): Sets/Displays the states of each of the GX6256 Matrix relays. If the check box is checked, the associated relay is closed. If the check box is not checked, the associated relay is open.

Inputs (check boxes): Sets/Displays the states of each of the global bus input relays. If the check box is checked, the associated relay is closed. If the check box is not checked, the associated relay is open.

Virtual Panel - HF Slot Page

The following picture shows the HF Slot Page, 19-HF (HF PXI card that is installed on PXI Slot #19) settings:

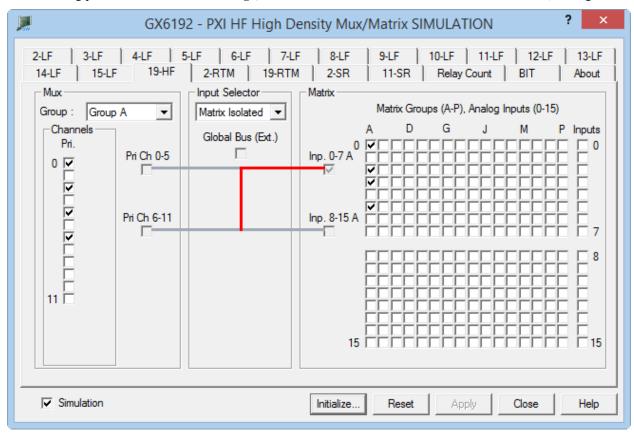


Figure 2-16: Virtual Panel – HF (GX6192) Page

The following controls are shown:

Mux Group Selection (combo box): Set/Displays the currently selected Mux Group

Channels (check boxes): Displays the current relay setting (closed or open). When a box in the matrix is checked, the relay in that row/column is closed. Similarly, unchecked boxes mean relays are open.

Input Selector (combo box): Sets/Displays the currently selected input selector mode

- None: The Mux, Matrix, and external lines are not connected to each other.
- Matrix Only: The Mux and Matrix are allowed to connect but the external lines are disconnected.
- Ext. Only: The Mux and the external lines are allowed to connect to each other.
- Matrix and Ext.: The Mux is allowed to connect to the Matrix and external lines.
- Matrix Isolated: The Mux is not allowed to connect to the selector, effectively making it isolated from the rest of the board.

Global Bus (Ext.) (check box): Displays the state of the connection between the global bus external input and the input selector

Pri Ch 0-7 (check box): Displays the state of the connection between the primary mux low channels to the input selector

Pri Ch 8-15 (check box): Displays the state of the connection between the primary mux high channels to the input selector

Sec Ch 0-7 (check box): Displays the state of the connection between the secondary mux low channels to the input selector

Sec Ch 8-15 (check box): Displays the state of the connection between the secondary mux high channels to the input selector

Inp. Ch 0-7 (check box): Displays the state of the connection between the matrix low channels to the input selector

Inp. Ch 8-15 (check box): Displays the state of the connection between the matrix high channels to the input selector

Matrix (check boxes): Sets/Displays the states of each of the GX6256 Matrix relays. If the check box is checked, the associated relay is closed. If the check box is not checked, the associated relay is open.

Inputs (check boxes): Sets/Displays the states of each of the instrument input relays. If the check box is checked, the associated relay is closed. If the check box is not checked, the associated relay is open.

Virtual Panel - Rear Transition Module (RTM) Page

The following picture shows the RTM page, 2-RTM (RTM module that is installed on PXI backplane on slot #2, controlled using 2-LF) settings:

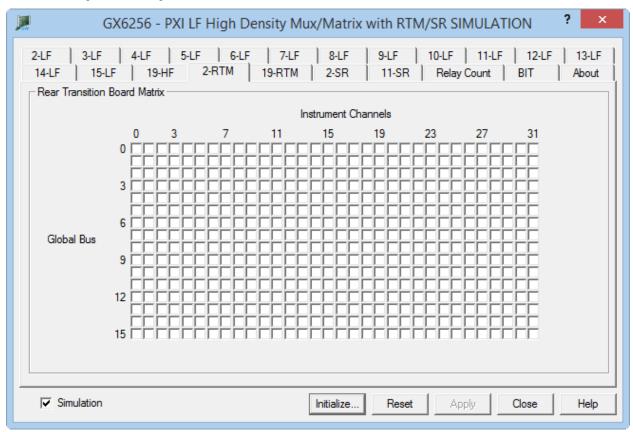


Figure 2-17: Virtual Panel - Rear Transition Module (GX6032) Page

The following controls are shown:

Rear Transition Board Matrix (check boxes): Sets/Displays the states of each of the rear transition module relays. If the check box is checked, the associated relay is closed. If the check box is not checked, the associated relay is open.

Virtual Panel - Switch Router (SR) Page

The following picture shows the **SR page, 2-SR** (SR module that is installed on PXI backplane on slot #2, controlled using 2-LF) settings:

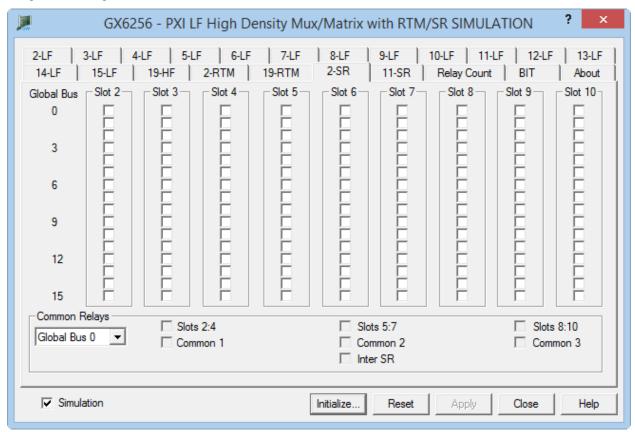


Figure 2-18: Virtual Panel - Switching Router Module (GX6009) Page

The following controls are shown:

Slot Global Bus (check boxes): Sets/Displays the states of each of the switch router relays. If the check box is checked, the associated relay is closed. If the check box is not checked, the associated relay is open. Each relay corresponds to a particular global bus line (0-15).

Common Relays Global Bus Selection (combo box): Set/Displays the currently selected global bus line

Slots 2:4 and Common 1 (check boxes): Displays the status of the relay that connects slots 2, 3, and 4 to the other slots

Slots 5:7 and Common 2 (check boxes): Displays the status of the relay that connects slots 5, 6, and 7 to the other slots

Slots 8:10 and Common 3 (check boxes): Displays the status of the relay that connects slots 8, 9, and 10 to the other slots

Inter SR (check box): Displays the status of the relay that connects this switch router to the other switch router

Virtual Panel - Relay Count Page

Clicking on the **Relay Count** tab will show the **Relay Count Page** as shown in Figure 2-19:

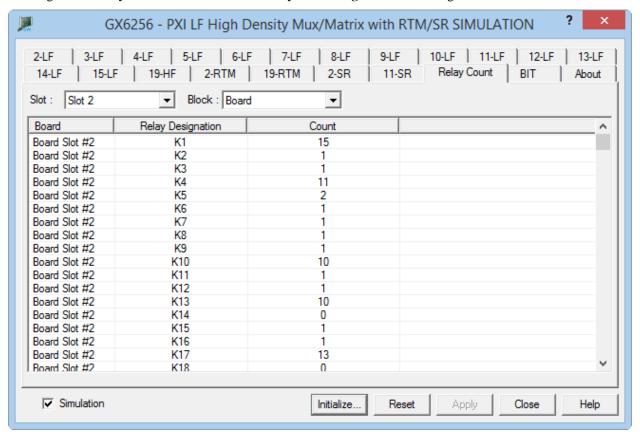


Figure 2-19: Virtual Panel – Relay Count Page

The following controls are shown in the Relay Count page:

Slot Selection (combo box): Set/Displays the currently selected board's slot

Block Selection (combo box): Sets/Displays the currently selected block (board, RTM, or SR) of the currently selected board

- Board: Show relays that are located only on the board (GX6256 or GX6192) that resides in the selected slot.
- RTM: Show relays that are located only on the Rear Transition Module (GX6032) that resides in the selected slot.
- Switch Router: Show relays that are located only on the Switch Router (GX6009) that resides in the selected

Relay Count List (list control): Displays the number of openings and closures of each relay within the currently selected block of the currently selected board (slot).

Virtual Panel - Built In Test (BIT) Page

Clicking on the **BIT** tab will show the **BIT Page** as shown here:

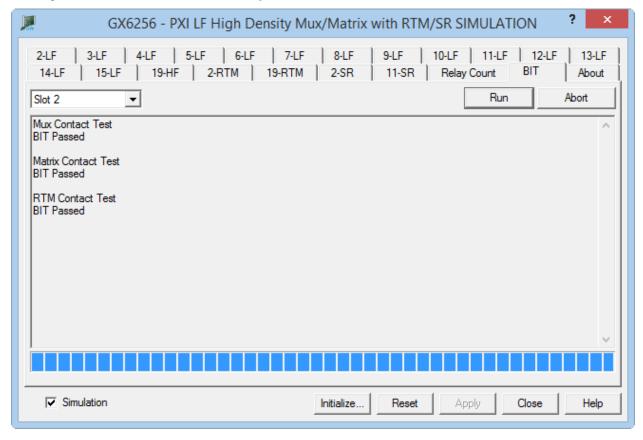


Figure 2-20: GX6256/GX6192 Virtual Panel - Virtual Panel - Built In Test (BIT) Page

The following controls are shown in the Built In Test (BIT) page:

Slot Selection (combo box): Set/Displays the currently selected board's slot

Run Button (button): Starts running the Built In Test (BIT)

Abort Button (button): Aborts a currently running Built In Test (BIT)

Built In Test Results (text box): Displays the results of the last completed Built In Test (BIT)

Virtual Panel About Page

Clicking on the **About** tab will show the **About Page** as shown in Figure 2-21:

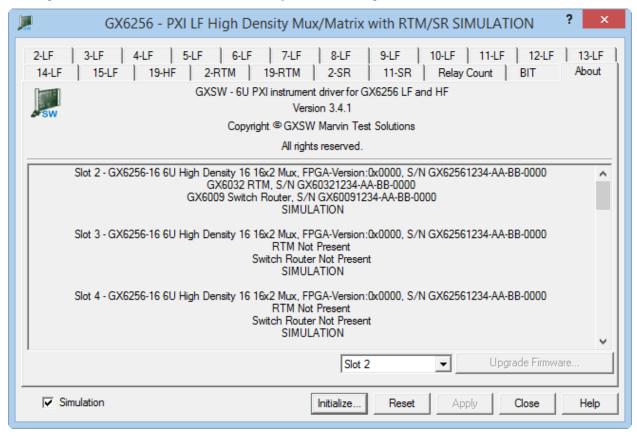


Figure 2-21: Virtual Panel – About Page

The following controls are shown in the About page:

The top part of the **About** page displays version and copyright of the GXSW driver. The bottom part displays the board summary.

The **About** page also contains a button **Upgrade Firmware...** which is used to upgrade the board's FPGA firmware. This button maybe used only when the board requires upgrade as directed by Marvin Test Solutions support. The upgrade requires a firmware file (.jam) that is written to the board FPGA. After the upgrade is complete, you must shut down the computer to recycle power to the board.

Slot Selection (combo box): Set/Displays the currently selected board's slot for upgrading firmware.

Chapter 3 - Installation and Connections

Getting Started

This section includes general hardware installation procedures for the GX6256/GX6192 board and installation instructions for the GX6256/GX6192/GX6032/GX6009 (GXSW) software. Before proceeding, please refer to the appropriate chapter to become familiar with the board being installed.

To Find Information on	Refer to
Hardware Installation	This Chapter
Driver Installation	This Chapter
Function Reference	Chapter 5

Packing List

All GX6256/GX6192 boards have the same basic packing list, which includes:

- 1. GX6256/GX6192 Board
- 2. CD that includes the GXSW software

Unpacking and Inspection

After removing the board from the shipping carton:

Caution - Static sensitive devices are present. Ground yourself to discharge static.

- 1. Remove the board from the static bag by handling only the metal portions.
- Be sure to check the contents of the shipping carton to verify that all of the items found in it match the packing
- Inspect the board for possible damage. If there is any sign of damage, return the board immediately. Please refer to the warranty information at the beginning of the manual.

System Requirements

The switching instrument boards are designed for use with a 6U cPCI or PXI compatible chassis. The software is compatible with any computer system running Windows

Installation of the GXSW Software

Before installing the board it is recommended that you install the GXSW software as described in this section. To install the GXSW software, follow the instruction described below:

- 1. Insert the Marvin Test Solutions CD-ROM and locate the GXSW.EXE setup program. If you computer's Auto Run is configured, when inserting the CD a browser will show several options. Select the Marvin Test Solutions Files option, then locate the setup file. If Auto Run is not configured you can open the Windows explorer and locate the setup files (usually located under \Files\Setup folder). You can also download the file from Marvin Test Solutions' web site (www.marvintest.com).
- 2. Run the GXSW setup and follow the instruction on the Setup screen to install the GXSW driver.

Note: When installing under Windows, you may be required to restart the setup after logging-in as a user with Administrator privileges. This is required in-order to upgrade your system with newer Windows components and to install kernel-mode device drivers which are required by the GXSW driver to access resources on your board.

- 3. The first setup screen to appear is the Welcome screen. Click **Next** to continue.
- 4. Enter the folder where GXSW is to be installed. Either click **Browse** to set up a new folder, or click **Next** to accept the default entry of C:\Program Files\Marvin Test Solutions\GXSW under 32-bit Windows, or C:\Program Files (x86)\Marvin Test Solutions\GXSW under 64-bit Windows.
- 5. Select the type of Setup you wish and click Next. You can choose between Typical, Run-Time and Custom setups types. The Typical setup type installs all files. Run-Time setup type will install only the files required for controlling the board either from its driver or from its virtual panel. The Custom setup type lets you select from the available components.

The program will now start its installation. During the installation, Setup may upgrade some of the Windows shared components and files. The Setup may ask you to reboot after completion if some of the components it replaced were used by another application during the installation – do so before attempting to use the software.

You can now continue with the installation to install the board. After the board installation is complete you can test your installation by starting a panel program that lets you control the board interactively. The panel program can be started by selecting it from the Start, Programs, GXSW menu located in the Windows Taskbar.

Setup Maintenance Program

You can run the Setup again after GXSW has been installed from the original disk or from the Windows Control Panel – Add Remove Programs applet. Setup will be in the Maintenance mode when running for the second time. The Maintenance window show below allows you to modify the current GXSW installation. The following options are available in Maintenance mode:

Modify. When you want to add or remove GXSW components.

Repair. When you have corrupted files and need to reinstall.

Remove. When you want to completely remove GXSW.

Select one of the options and click **Next** and follow the instruction on the screen until Setup is complete.

Overview of the GXSW Software

Once the software is installed, the following tools and software components are available:

- GXSW Panel Configures and controls the GX7016 Switching Subsystem's various features via an interactive user interface.
- GXSW driver A DLL based function library (GXSW.DLL for 32-bit applications or GXSW64.dll for 64bit applications, located in the Windows System folder) used to program and control the board.
- **Programming files and examples** Interface files and libraries for support of various programming tools. A complete list of files and development tools supported by the driver is included in subsequent sections of this manual.
- **Documentation** On-Line help and User's Guide for the Switching Subsystem, GXSW driver and panel.
- HW driver and PXI/PCI Explorer applet HW driver allows the GXSW driver to access and program the supported boards. The explorer applet configures the PXI chassis, controllers and devices. This is required for accurate identification of your PXI instruments later on when installed in your system. The applet configuration is saved to PXISYS.ini and PXIeSYS.ini and is used by Marvin Test Solutions instruments HW driver and VISA. The applet can be used to assign chassis numbers, Legacy Slot numbers and instrument alias names. The HW driver is installed and shared with all Marvin Test Solutions products to support accessing the PC resources. Similar to HW driver, VISA provides a standard way for instrument manufacturers and users to write and use instruments drivers. VISA is a standard maintained by the VXI Plug & Play System Alliance and the PXI Systems Alliance organizations (http://www.vxipnp.org/, http://www.pxisa.org/). The VISA resource manager such as National Instruments Measurement & Automation (NI-MAX) displays and configures instruments and their address (similar to Marvin Test Solutions' PXI/PCI Explorer). The GXSW driver can work with either HW or VISA to control an access the supported boards.

In addition to the GXSW software components, this manual also described the **SwitchEasy** software that is based on the GXSW driver and provides a rule-based, pin mapping and higher level access to the switching subsystem. SwitchEasy software is described later in this manual.

Installation Folders

The GX6256/GX6192 driver files are installed in the default folder C:\Program Files\Marvin Test Solutions\GXSW under 32-bit Windows or C:\Program Files (x86)\Marvin Test Solutions\GXSW under 64-bit Windows . You can change the default GXSW folder to one of your choosing at the time of installation. During the installation, GXSW Setup creates and copies files to the following folders:

Name	Purpose / Contents
\Marvin Test Solutions\GXSW	The GXSW folder. Contains panel programs, programming libraries, interface files and examples, on-line help files and other documentation.
\Marvin Test Solutions\HW	HW device driver. Provide access to your board hardware resources such as memory, IO ports and PCI board configuration. See the README.TXT located in this directory for more information.
\ATEasy\Drivers	ATEasy drivers folder. GXSW Driver and example are copied to this directory only if ATEasy is installed to your machine.
Windows 64 and 32-bit system folders	Contains the GXSW DLL and GXSW64.DLL drivers, HW driver shared files and some upgraded system components, such as the HTML help viewer, etc.

Configuring Your PXI System using the PXI/PCI Explorer

To configure your PXI/PCI system using the **PXI/PCI Explorer** applet follow these steps:

- 1. Start the PXI/PCI Explorer applet. The applet can be start from the Windows Control Panel or from the Windows Start Menu, Marvin Test Solutions, HW, PXI/PCI Explorer.
- 2. Identify Chassis and Controllers. After the PXI/PCI Explorer is started, it will scan your system for changes and will display the current configuration. The PXI/PCI Explorer automatically detects systems that have Marvin Test Solutions controllers and chassis. In addition, the applet detects PXI-MXI-3/4 extenders in your system (manufactured by National Instruments). If your chassis is not shown in the explorer main window, use the Identify Chassis/Controller commands to identify your system. Chassis and Controller manufacturers should provide INI and driver files for their chassis and controllers which are used by these commands.
- 3. Change chassis numbers, PXI devices Legacy Slot numbering and PXI devices Alias names. These are optional steps and can be performed if you would like your chassis to have different numbers. Legacy slots numbers are used by older Marvin Test Solutions or VISA drivers. Alias names can provide a way to address a PXI device using a logical name (e.g. "DMM1"). For more information regarding slot numbers and alias names, see the Gx6256Initialize and Gx6256InitializeVisa functions.
- 4. Save your work. PXI Explorer saves the configuration to the following files located in the Windows folder: PXISYS.ini, PXIeSYS.ini and GxPxiSys.ini. Click on the **Save** button to save your changes. The PXI/Explorer will prompt you to save the changes if changes were made or detected (an asterisk sign '*' in the caption indicated changes).

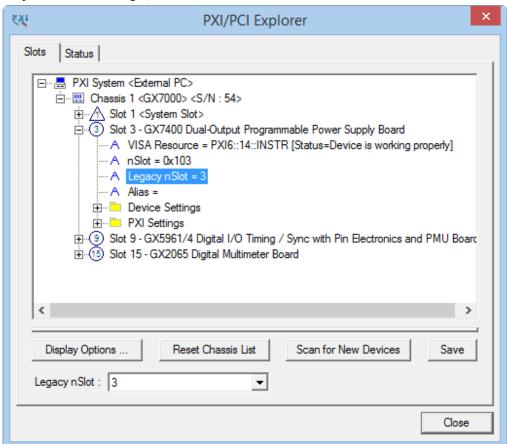


Figure 3-1: PXI/PCI Explorer

Board Installation

Before you Begin

- Install the GXSW driver as described in the prior section.
- Configure your PXI/PC system using **PXI/PCI Explorer** as described in the prior section.
- Verify that all the components listed in the packing list (see previous section in this chapter) are present.

Electric Static Discharge (ESD) Precautions

To reduce the risk of damage to the GX6256 board, the following precautions should be observed:

Leave the board in the anti-static bags until installation requires removal. The anti-static bag protects the board from harmful static electricity.

Save the anti-static bag in case the board is removed from the computer in the future.

Carefully unpack and install the board. Do not drop or handle the board roughly.

Handle the board by the edges. Avoid contact with any components on the circuit board.

Caution – Do not insert or remove any board while the computer is on. Turn off the power from the PXI chassis before installation.

Installing a PXI Board

Install the board as follows:

- Install first the GXSW Driver as described in the next section.
- Turn off the PXI chassis and unplug the power cord.
- Locate a PXI empty slot on the PXI chassis.
- 4. Place the module edges into the PXI chassis rails (top and bottom).
- Carefully slide the PXI board to the rear of the chassis, make sure that the ejector handles are pushed **out** (as shown in Figure 3-2).

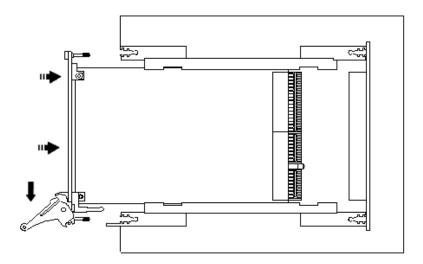


Figure 3-2: Ejector handles position during module insertion

After you feel resistance, push in the ejector handles as shown in Figure 3-3 to secure the module into the frame.

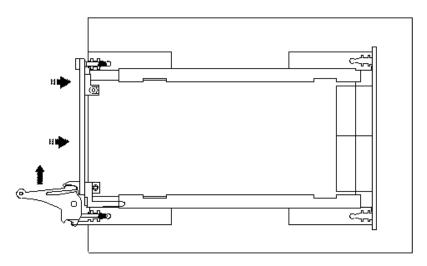


Figure 3-3: Ejector handles position after module insertion

- Tighten the module's front panel to the chassis to secure the module in.
- 8. Connect any necessary cables to the board.
- Plug the power cord in and turn on the PXI chassis.

Plug & Play Driver Installation

Plug & Play operating systems notifies the user that a new board was found using the New Hardware Found wizard after restarting the system with the new board.

If another Marvin Test Solutions board software package was already installed, Windows will suggest using the driver information file: HW.INF. The file is located in your Program Files\Marvin Test Solutions\HW folder. Click **Next** to confirm and follow the instructions on the screen to complete the driver installation.

If the operating system was unable to find the driver (since the GXSW driver was not installed prior to the board installation), you may install the GXSW driver as described in the prior section, then click on the Have Disk button and browse to select the HW.INF file located in Program File folder under \Marvin Test Solutions\HW.

If you are unable to locate the driver click Cancel to the found New Hardware wizard and exit the New Hardware Found Wizard, install the GXSW driver, reboot your computer and repeat this procedure.

The Windows Device Manager (open from the System applet from the Windows Control Panel) must display the proper board name before continuing to use the board software (no Yellow warning icon shown next to device). If the device is displayed with an error you can select it and press delete and then press F5 to rescan the system again and to start the New Hardware Found wizard.

Removing a Board

Remove the board as follows:

- 1. Turn off the PXI chassis and unplug the power cord.
- 2. Locate a PXI slot on the PXI chassis.
- 3. Disconnect and remove any cables/connectors connected to the board.
- 4. Un-tighten the module's front panel screws to the chassis.
- 5. Push out the ejector handles and slide the PXI board away from the chassis.
- 6. Optionally uninstall the GXSW driver.

Connectors and Jumpers

GX6256

Figure 3-4 shows the GX6256 board connectors and jumpers followed by their description:

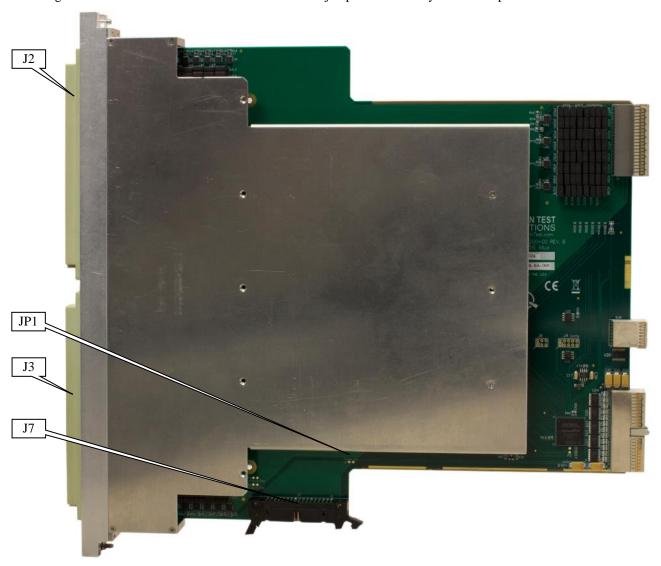
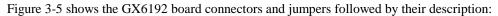


Figure 3-4: GX6256 Connectors and Jumpers


J2 – Front Connector: Mac-Panel DAK connector (200 pin).

J3 – Front Connector: Mac-Panel DAK connector (200 pin).

J7 – Instrument Connector: Shrouded right angle IDC header (34 pin).

JP1 - Chassis Ground Jumper: Connects chassis to power ground

GX6192

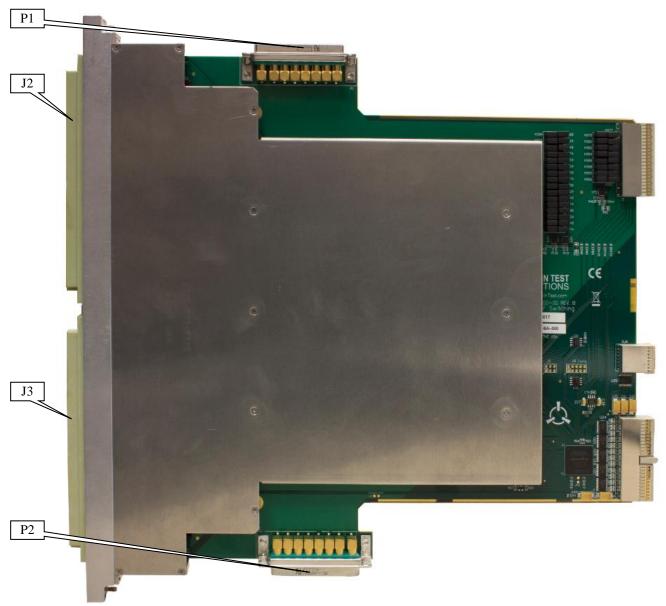


Figure 3-5: GX6192 Connectors and Jumpers

J2 – Front Connector: Mac-Panel DAK connector (200 pin).

J3 – Front Connector: Mac-Panel DAK connector (200 pin).

P1 – Analog Input Connector: BNC (8 pin).

P2 – Analog Input Connector: BNC (8 pin).

Connectors and Accessories

GX6256

Figure 3-6: GX6256 front Connectors

GX6192

Figure 3-7: GX6256 front Connectors

GX6256 J2 Connector

The following table describes the J2 (200 pin) connector's pin out:

Pin	Column A	Column B	Column C	Column D
1	UUT GND	UUT GND	UUT GND	UUT GND
2	Group A Channel 1	Group B Channel 1	Group C Channel 1	Group D Channel 1
3	Group A Channel 2	Group B Channel 2	Group C Channel 2	Group D Channel 2
4	Group A Channel 3	Group B Channel 3	Group C Channel 3	Group D Channel 3
5	Group A Channel 4	Group B Channel 4	Group C Channel 4	Group D Channel 4
6	UUT GND	UUT GND	UUT GND	UUT GND
7	UUT GND	UUT GND	UUT GND	UUT GND
8	Group A Channel 5	Group B Channel 5	Group C Channel 5	Group D Channel 5
9	Group A Channel 6	Group B Channel 6	Group C Channel 6	Group D Channel 6
10	Group A Channel 7	Group B Channel 7	Group C Channel 7	Group D Channel 7
11	Group A Channel 8	Group B Channel 8	Group C Channel 8	Group D Channel 8
12	UUT GND	UUT GND	UUT GND	UUT GND
13	UUT GND	UUT GND	UUT GND	UUT GND
14	Group A Channel 9	Group B Channel 9	Group C Channel 9	Group D Channel 9
15	Group A Channel 10	Group B Channel 10	Group C Channel 10	Group D Channel 10
16	Group A Channel 11	Group B Channel 11	Group C Channel 11	Group D Channel 11
17	Group A Channel 12	Group B Channel 12	Group C Channel 12	Group D Channel 12
18	UUT GND	UUT GND	UUT GND	UUT GND
19	UUT GND	UUT GND	UUT GND	UUT GND
20	Group A Channel 13	Group B Channel 13	Group C Channel 13	Group D Channel 13
21	Group A Channel 14	Group B Channel 14	Group C Channel 14	Group D Channel 14
22	Group A Channel 15	Group B Channel 15	Group C Channel 15	Group D Channel 15
23	Group A Channel 16	Group B Channel 16	Group C Channel 16	Group D Channel 16
24	UUT GND	UUT GND	UUT GND	UUT GND
25	I/O0	I/O0	I/O0	I/O0
26	CHASSIS	CHASSIS	CHASSIS	CHASSIS
27	UUT GND	UUT GND	UUT GND	UUT GND
28	Group E Channel 1	Group F Channel 1	Group G Channel 1	Group H Channel 1
29	Group E Channel 2	Group F Channel 2	Group G Channel 2	Group H Channel 2
30	Group E Channel 3	Group F Channel 3	Group G Channel 3	Group H Channel 3
31	Group E Channel 4	Group F Channel 4	Group G Channel 4	Group H Channel 4
32	UUT GND	UUT GND	UUT GND	UUT GND
33	UUT GND	UUT GND	UUT GND	UUT GND

Ī	34	Group E Channel 5	Group F Channel 5	Group G Channel 5	Group H Channel 5
Ī	35	Group E Channel 6	Group F Channel 6	Group G Channel 6	Group H Channel 6
	36	Group E Channel 7	Group F Channel 7	Group G Channel 7	Group H Channel 7
	37	Group E Channel 8	Group F Channel 8	Group G Channel 8	Group H Channel 8
	38	UUT GND	UUT GND	UUT GND	UUT GND
	39	UUT GND	UUT GND	UUT GND	UUT GND
	40	Group E Channel 9	Group F Channel 9	Group G Channel 9	Group H Channel 9
	41	Group E Channel 10	Group F Channel 10	Group G Channel 10	Group H Channel 10
	42	Group E Channel 11	Group F Channel 11	Group G Channel 11	Group H Channel 11
	43	Group E Channel 12	Group F Channel 12	Group G Channel 12	Group H Channel 12
	44	UUT GND	UUT GND	UUT GND	UUT GND
	45	UUT GND	UUT GND	UUT GND	UUT GND
	46	Group E Channel 13	Group F Channel 13	Group G Channel 13	Group H Channel 13
	47	Group E Channel 14	Group F Channel 14	Group G Channel 14	Group H Channel 14
Ī	48	Group E Channel 15	Group F Channel 15	Group G Channel 15	Group H Channel 15
Ī	49	Group E Channel 16	Group F Channel 16	Group G Channel 16	Group H Channel 16
	50	UUT GND	UUT GND	UUT GND	UUT GND

Table 3-1: GX6256 Connector J2

The following table describes the signals mentioned in Table 3-1:

Signal name	Comments
Group X Channel Y	Mux Group channels for group A through H
UUT GND	Unit Under Test ground. This ground is isolated from power ground and chassis.
I/O X	PIO (Static general purpose I/O) pins 0 to 3

GX6256 J3 Connector

The following table describes the J3 (200 pin) connector's pin out:

Pin	Column A	Column B	Column C	Column D
1	UUT GND	UUT GND	UUT GND	UUT GND
2	Group I Channel 1	Group J Channel 1	Group K Channel 1	Group L Channel 1
3	Group I Channel 2	Group J Channel 2	Group K Channel 2	Group L Channel 2
4	Group I Channel 3	Group J Channel 3	Group K Channel 3	Group L Channel 3
5	Group I Channel 4	Group J Channel 4	Group K Channel 4	Group L Channel 4
6	UUT GND	UUT GND	UUT GND	UUT GND
7	UUT GND	UUT GND	UUT GND	UUT GND
8	Group I Channel 5	Group J Channel 5	Group K Channel 5	Group L Channel 5
9	Group I Channel 6	Group J Channel 6	Group K Channel 6	Group L Channel 6
10	Group I Channel 7	Group J Channel 7	Group K Channel 7	Group L Channel 7
11	Group I Channel 8	Group J Channel 8	Group K Channel 8	Group L Channel 8
12	UUT GND	UUT GND	UUT GND	UUT GND
13	UUT GND	UUT GND	UUT GND	UUT GND
14	Group I Channel 9	Group J Channel 9	Group K Channel 9	Group L Channel 9
15	Group I Channel 10	Group J Channel 10	Group K Channel 10	Group L Channel 10
16	Group I Channel 11	Group J Channel 11	Group K Channel 11	Group L Channel 11
17	Group I Channel 12	Group J Channel 12	Group K Channel 12	Group L Channel 12
18	UUT GND	UUT GND	UUT GND	UUT GND
19	UUT GND	UUT GND	UUT GND	UUT GND
20	Group I Channel 13	Group J Channel 13	Group K Channel 13	Group L Channel 13
21	Group I Channel 14	Group J Channel 14	Group K Channel 14	Group L Channel 14
22	Group I Channel 15	Group J Channel 15	Group K Channel 15	Group L Channel 15
23	Group I Channel 16	Group J Channel 16	Group K Channel 16	Group L Channel 16
24	UUT GND	UUT GND	UUT GND	UUT GND
25	I/O0	I/O0	I/O0	I/O0
26	CHASSIS	CHASSIS	CHASSIS	CHASSIS
27	UUT GND	UUT GND	UUT GND	UUT GND
28	Group M Channel 1	Group N Channel 1	Group O Channel 1	Group P Channel 1
29	Group M Channel 2	Group N Channel 2	Group O Channel 2	Group P Channel 2
30	Group M Channel 3	Group N Channel 3	Group O Channel 3	Group P Channel 3
31	Group M Channel 4	Group N Channel 4	Group O Channel 4	Group P Channel 4
32	UUT GND	UUT GND	UUT GND	UUT GND
33	UUT GND	UUT GND	UUT GND	UUT GND

34	Group M Channel 5	Group N Channel 5	Group O Channel 5	Group P Channel 5
35	Group M Channel 6	Group N Channel 6	Group O Channel 6	Group P Channel 6
36	Group M Channel 7	Group N Channel 7	Group O Channel 7	Group P Channel 7
37	Group M Channel 8	Group N Channel 8	Group O Channel 8	Group P Channel 8
38	UUT GND	UUT GND	UUT GND	UUT GND
39	UUT GND	UUT GND	UUT GND	UUT GND
40	Group M Channel 9	Group N Channel 9	Group O Channel 9	Group P Channel 9
41	Group M Channel 10	Group N Channel 10	Group O Channel 10	Group P Channel 10
42	Group M Channel 11	Group N Channel 11	Group O Channel 11	Group P Channel 11
43	Group M Channel 12	Group N Channel 12	Group O Channel 12	Group P Channel 12
44	UUT GND	UUT GND	UUT GND	UUT GND
45	UUT GND	UUT GND	UUT GND	UUT GND
46	Group M Channel 13	Group N Channel 13	Group O Channel 13	Group P Channel 13
47	Group M Channel 14	Group N Channel 14	Group O Channel 14	Group P Channel 14
48	Group M Channel 15	Group N Channel 15	Group O Channel 15	Group P Channel 15
49	Group M Channel 16	Group N Channel 16	Group O Channel 16	Group P Channel 16
50	UUT GND	UUT GND	UUT GND	UUT GND
48	Group M Channel 15 Group M Channel 16	Group N Channel 15 Group N Channel 16	Group O Channel 15 Group O Channel 16	Group P Channel 1 Group P Channel 1

Table 3-2: GX6256 Connector J3

The following table describes the signals mentioned in Table 3-2:

Signal name	Comments	
Group X Channel Y	Mux Group channels for group I through P	
UUT GND	Unit Under Test ground. This ground is isolated from power ground and chassis.	
I/O X	PIO (Static general purpose I/O) pins 4 to 7	

GX6256 J7 Connector

Pin	Function	Pin	Function
1	Din1	2	UUT GND
3	Din2	4	UUT GND
5	Din3	6	UUT GND
7	Din4	8	UUT GND
9	Din5	10	UUT GND
11	Din6	12	UUT GND
13	Din7	14	UUT GND
15	Din8	16	UUT GND
17	Din9	18	UUT GND
19	Din10	20	UUT GND
21	Din11	22	UUT GND
23	Din12	24	UUT GND
25	Din13	26	UUT GND
27	Din14	28	UUT GND
29	Din15	30	UUT GND
31	Din16	32	UUT GND
33	NC	34	DUTGND

Table 3-3: GX6256 Connector J7

GX6192 J2 Connector

The following table describes the J2 (200 pin) connector's pin out:

Pin	Column A	Column B	Column C	Column D
1	Group A Channel 1	UUT GND	Group C Channel 1	UUT GND
2	UUT GND	Group B Channel 1	UUT GND	Group D Channel 1
3	Group A Channel 2	UUT GND	Group C Channel 2	UUT GND
4	UUT GND	Group B Channel 2	UUT GND	Group D Channel 2
5	Group A Channel 3	UUT GND	Group C Channel 3	UUT GND
6	UUT GND	Group B Channel 3	UUT GND	Group D Channel 3
7	Group A Channel 4	UUT GND	Group C Channel 4	UUT GND
8	UUT GND	Group B Channel 4	UUT GND	Group D Channel 4
9	Group A Channel 5	UUT GND	Group C Channel 5	UUT GND
10	UUT GND	Group B Channel 5	UUT GND	Group D Channel 5
11	Group A Channel 6	UUT GND	Group C Channel 6	UUT GND
12	UUT GND	Group B Channel 6	UUT GND	Group D Channel 6
13	Group A Channel 7	UUT GND	Group C Channel 7	UUT GND
14	UUT GND	Group B Channel 7	UUT GND	Group D Channel 7
15	Group A Channel 8	UUT GND	Group C Channel 8	UUT GND
16	UUT GND	Group B Channel 8	UUT GND	Group D Channel 8
17	Group A Channel 9	UUT GND	Group C Channel 9	UUT GND
18	UUT GND	Group B Channel 9	UUT GND	Group D Channel 9
19	Group A Channel 10	UUT GND	Group C Channel 10	UUT GND
20	UUT GND	Group B Channel 10	UUT GND	Group D Channel 10
21	Group A Channel 11	UUT GND	Group C Channel 11	UUT GND
22	UUT GND	Group B Channel 11	UUT GND	Group D Channel 11
23	Group A Channel 12	UUT GND	Group C Channel 12	UUT GND
24	UUT GND	Group B Channel 12	UUT GND	Group D Channel 12
25	I/O0	I/O1	I/O2	I/O3
26	CHASSIS	CHASSIS	CHASSIS	CHASSIS
27	Group E Channel 1	UUT GND	Group G Channel 1	UUT GND
28	UUT GND	Group F Channel 1	UUT GND	Group H Channel 1
29	Group E Channel 2	UUT GND	Group G Channel 2	UUT GND
30	UUT GND	Group F Channel 2	UUT GND	Group H Channel 2
31	Group E Channel 3	UUT GND	Group G Channel 3	UUT GND
32	UUT GND	Group F Channel 3	UUT GND	Group H Channel 3
33	Group E Channel 4	UUT GND	Group G Channel 4	UUT GND

34	UUT GND	Group F Channel 4	UUT GND	Group H Channel 4
35	Group E Channel 5	UUT GND	Group G Channel 5	UUT GND
36	UUT GND	Group F Channel 5	UUT GND	Group H Channel 5
37	Group E Channel 6	UUT GND	Group G Channel 6	UUT GND
38	UUT GND	Group F Channel 6	UUT GND	Group H Channel 6
39	Group E Channel 7	UUT GND	Group G Channel 7	UUT GND
40	UUT GND	Group F Channel 7	UUT GND	Group H Channel 7
41	Group E Channel 8	UUT GND	Group G Channel 8	UUT GND
42	UUT GND	Group F Channel 8	UUT GND	Group H Channel 8
43	Group E Channel 9	UUT GND	Group G Channel 9	UUT GND
44	UUT GND	Group F Channel 9	UUT GND	Group H Channel 9
45	Group E Channel 10	UUT GND	Group G Channel 10	UUT GND
46	UUT GND	Group F Channel 10	UUT GND	Group H Channel 10
47	Group E Channel 11	UUT GND	Group G Channel 11	UUT GND
48	UUT GND	Group F Channel 11	UUT GND	Group H Channel 11
49	Group E Channel 12	UUT GND	Group G Channel 12	UUT GND
50	UUT GND	Group F Channel 12	UUT GND	Group H Channel 12

Table 3-4: GX6192 Connector J2

The following table describes the signals mentioned in Table 3-4:

Signal name	Comments
Group X Channel Y	Mux Group channels for group A through H
UUT GND	Unit Under Test ground. This ground is isolated from power ground and chassis.
I/O X	PIO (Static general purpose I/O) pins 0 to 3

GX6192 J3 Connector

The following table describes the J3 (200 pin) connector's pin out:

Pin	Column A	Column B	Column C	Column D
1	Group I Channel 1	UUT GND	Group K Channel 1	UUT GND
2	UUT GND	Group J Channel 1	UUT GND	Group L Channel 1
3	Group I Channel 2	UUT GND	Group K Channel 2	UUT GND
4	UUT GND	Group J Channel 2	UUT GND	Group L Channel 2
5	Group I Channel 3	UUT GND	Group K Channel 3	UUT GND
6	UUT GND	Group J Channel 3	UUT GND	Group L Channel 3
7	Group I Channel 4	UUT GND	Group K Channel 4	UUT GND
8	UUT GND	Group J Channel 4	UUT GND	Group L Channel 4
9	Group I Channel 5	UUT GND	Group K Channel 5	UUT GND
10	UUT GND	Group J Channel 5	UUT GND	Group L Channel 5
11	Group I Channel 6	UUT GND	Group K Channel 6	UUT GND
12	UUT GND	Group J Channel 6	UUT GND	Group L Channel 6
13	Group I Channel 7	UUT GND	Group K Channel 7	UUT GND
14	UUT GND	Group J Channel 7	UUT GND	Group L Channel 7
15	Group I Channel 8	UUT GND	Group K Channel 8	UUT GND
16	UUT GND	Group J Channel 8	UUT GND	Group L Channel 8
17	Group I Channel 9	UUT GND	Group K Channel 9	UUT GND
18	UUT GND	Group J Channel 9	UUT GND	Group L Channel 9
19	Group I Channel 10	UUT GND	Group K Channel 10	UUT GND
20	UUT GND	Group J Channel 10	UUT GND	Group L Channel 10
21	Group I Channel 11	UUT GND	Group K Channel 11	UUT GND
22	UUT GND	Group J Channel 11	UUT GND	Group L Channel 11
23	Group I Channel 12	UUT GND	Group K Channel 12	UUT GND
24	UUT GND	Group J Channel 12	UUT GND	Group L Channel 12
25	I/O0	I/O0	I/O0	I/O0
26	CHASSIS	CHASSIS	CHASSIS	CHASSIS
27	Group M Channel 1	UUT GND	Group O Channel 1	UUT GND
28	UUT GND	Group N Channel 1	UUT GND	Group P Channel 1
29	Group M Channel 2	UUT GND	Group O Channel 2	UUT GND
30	UUT GND	Group N Channel 2	UUT GND	Group P Channel 2
31	Group M Channel 3	UUT GND	Group O Channel 3	UUT GND
32	UUT GND	Group N Channel 3	UUT GND	Group P Channel 3

33	Group M Channel 4	UUT GND	Group O Channel 4	UUT GND
34	UUT GND	Group N Channel 4	UUT GND	Group P Channel 4
35	Group M Channel 5	UUT GND	Group O Channel 5	UUT GND
36	UUT GND	Group N Channel 5	UUT GND	Group P Channel 5
37	Group M Channel 6	UUT GND	Group O Channel 6	UUT GND
38	UUT GND	Group N Channel 6	UUT GND	Group P Channel 6
39	Group M Channel 7	UUT GND	Group O Channel 7	UUT GND
40	UUT GND	Group N Channel 7	UUT GND	Group P Channel 7
41	Group M Channel 8	UUT GND	Group O Channel 8	UUT GND
42	UUT GND	Group N Channel 8	UUT GND	Group P Channel 8
43	Group M Channel 9	UUT GND	Group O Channel 9	UUT GND
44	UUT GND	Group N Channel 9	UUT GND	Group P Channel 9
45	Group M Channel 10	UUT GND	Group O Channel 10	UUT GND
46	UUT GND	Group N Channel 10	UUT GND	Group P Channel 10
47	Group M Channel 11	UUT GND	Group O Channel 11	UUT GND
48	UUT GND	Group N Channel 11	UUT GND	Group P Channel 11
49	Group M Channel 12	UUT GND	Group O Channel 12	UUT GND
50	UUT GND	Group N Channel 12	UUT GND	Group P Channel 12

Table 3-5: GX6192 Connector J3

The following table describes the signals mentioned in Table 3-5:

Signal name	Comments
Group X Channel Y	Mux Group channels for group I through P
UUT GND	Unit Under Test ground. This ground is isolated from power ground and chassis.
I/O X	PIO (Static general purpose I/O) pins 4 to 7

GX6192 P1 Connector

The following table describes the P1 Analog Input (8 pin) connector's pin out:

Pin	Function	Pin	Function
1	Analog Input 15	2	Analog Input 13
3	Analog Input 11	4	Analog Input 9
5	Analog Input 7	6	Analog Input 5
7	Analog Input 3	8	Analog Input 1

Table 3-6: GX6192 Connector P1

GX6192 P2 Connector

The following table describes the P2 Analog Input (8 pin) connector's pin out:

Pin	Function	Pin	Function
1	Analog Input 2	2	Analog Input 4
3	Analog Input 6	4	Analog Input 8
5	Analog Input 10	6	Analog Input 12
7	Analog Input 14	8	Analog Input 16

Table 3-7: GX6192 Connector P2

Chapter 4 - SwitchEasy Software

SwitchEasy is a software platform based on ATEasy that allows users to control and configure the GX7016 Switching Subsystem through an ATEasy driver commands providing pin-mapping, rule based switching and higher level operation of the GX7016 switching subsystem.

SwitchEasy Overview

SwitchEasy is an ATEasy software driver provided with the TS-323 test system (GENASYS) that controls the connections and disconnections of the UUT signals to and from the Test Station equipment. Signal path connections, can be automatically chosen by the program or routed per user preference, must comply with a predefined set of rules, and provides repeatable paths configurations. The program supports UUT pin (name or user supplied ID) to MacPanel pin mapping and includes panels to provide the user with additional switching path information.

SwitchEasy is unique to TS-323 and only supports TS-323 switching architecture and topologies. Support for other switching architectures is not planned at this time (although it may be added in the future).

The SwitchEasy software is not part of the GXSW software and is installed as part of the TS-323/GENASYS test system software.

SwitchEasy Panel

The SwitchEasy Panel is designed to work as a standalone application that displays the switching subsystem's current status. The panel lists the instrument pins, UUT pins, triggers, and busses that are currently in use by the subsystem.

Status Page

The Status page displays the current state of connections between instrument resources and pins (UUT/Mac panel). This page also shows the global bus resources that are being used to facilitate connections.

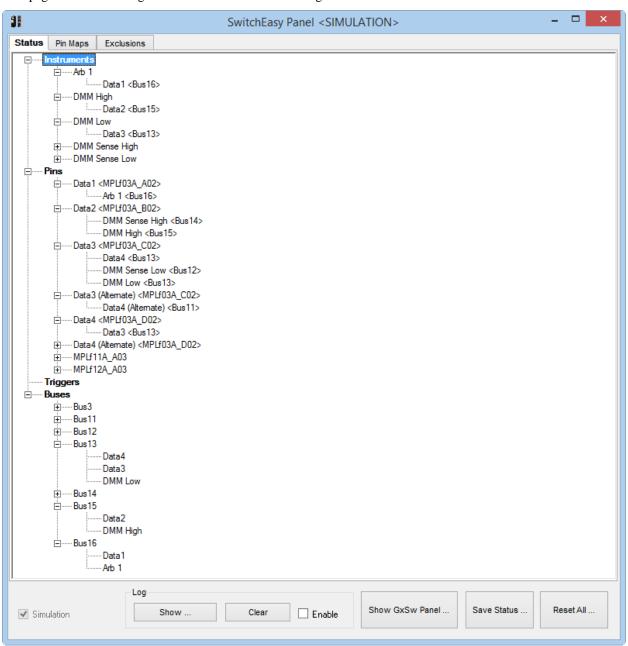


Figure 4-1: Switch Easy Panel Status Page

Status (Tree): The tree view shows currently made connections from the perspective of Instruments, Pins, Triggers, and Buses. The Instruments node expands to show what UUT/MacPanel pin are connected to each instrument resource. The Pins node expands to show what each UUT/MacPanel pin is connected to. For example, in Figure 4-1, under the Pins node, the Data1 pin is shown being connected to the Arb 1 instrument resource. The same information is mirrored under the Instruments node, where the Arb 1 instrument resource is shown connected to the Data 1 pin.

Log Group Box

Show... (Button): This button will launch the Windows event log which will show a log of Switch Easy events that have occurred.

Clear (Button): This button will clear Switch Easy events from the Windows event log.

Enable (Checkbox): This checkbox will enable or disable logging of Switch Easy events to the Windows event log.

Show GxSw Panel... (Button): This button will launch the GxSw low level panel.

Save Status... (Button): This button will save the connection state of Switch Easy to a file

Reset All... (Button): This button will reset all connections (disconnect everything).

Pin Maps Page

The Pins Maps page displays all pin mappings. The physical location of the pin (slot, tier, column, and row) are shown along with the mapped name.

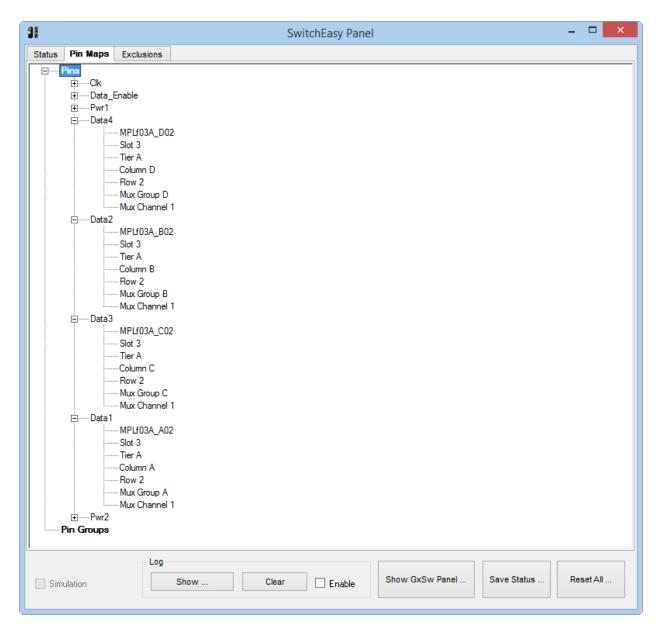


Figure 4-2: Switch Easy Panel Pin Maps Page

Pin Maps (Tree): The tree view shows currently mapped pins. Each mapped name node expands to show the physical location and description of the pin. For example, in Figure 4-2, the Data 4 node is expanded to show its location at Slot 3, Tier A, Column D, and Row 2. Mux group (D) and Mux Channel (1) are also displayed to provide the user more information about the physical pin.

Exclusions Page

The Exclusions page allows the user to select which instrument resources, pins, or global bus resources will be excluded from making connections. Any attempt to connect with an excluded instrument, pin or global bus will result in a run-time error.

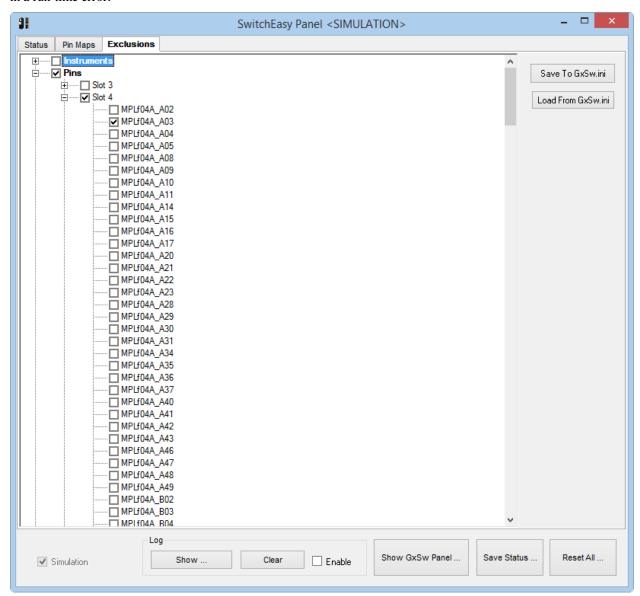


Figure 4-3: Switch Easy Panel Exclusions Page

Exclusions (Tree): The tree view shows all instruments, pins, triggers, and buses that are part of the switching subsystem. A marked checkbox indicates that the corresponding resource cannot be connected. For example, in Figure 4-3, the MPLf04A_A02 pin has been checked. This indicates that this particular pin will not be allowed to make a connection to any instrument resource, pin, trigger, or bus.

Save To GxSw.ini (Button): This button allows the user to save the exclusion rules to the GxSw.ini file.

Load From GxSw.ini (Button): This button loads the previously saved exclusions rules from the GxSw.ini file to Switch Easy.

SwitchEasy Base Commands

The following is a list of the SwitchEasy base commands:

Connect - These commands establishes a connection between an instrument and a MacPanel pin

Disconnect - These commands breaks a connection between an instrument and a MacPanel pin

Reset - Force all relays to an open state

Setup - Configures SwitchEasy (Instrument/Pin mapping, windows logging, trigger)

Panel - Starts the SwitchEasy panel

Utility - Configure and use the built in test, interrupts, and the PIO

SwitchEasy Command Reference

Command	Description	
<u>Connect/Disconnect</u>		
Connect Instrument Differential	Connects Differential Instrument to two Pins using optional bus and rules	
Connect Instrument Instrument	Connects an Instrument to an Instrument	
Connect Instrument MpPin	Connect Instrument Pin to MacPanel Pin	
Connect Instrument Pin	Connect Instrument Pin to UUT Pin	
Connect Pin Pin	Connect UUT Pin to UUT Pin	
Connect Pin MpPin	Connect UUT Pin to MacPanel Pin	
Connect MpPin MpPin	Connect MacPanel Pin to MacPanel Pin	
Connect Trigger Instrument	Connect Trigger to Instrument	
Connect Trigger MpPin	Connect Trigger to MacPanel pin	
Connect Trigger Pin	Connect Trigger to UUT Pin	
Connect Trigger Trigger	Connect Trigger to Trigger	
Connect Digital Pin	Connect UUT Pin to digital line	
Connect Digital MpPin	Connect MacPanel Pin to digital line	
Disconnect Bus	Disconnect Bus from All, Instrument or Pin	
Disconnect Digital Pin	Disconnect UUT Pin from digital line	
Disconnect Digital MpPin	Disconnect MacPanel Pin from digital line	
Disconnect Instrument Instrument	Disconnect Instrument from another instrument	
Disconnect Instrument MpPin	Disconnect Instrument from MacPanel pin	
Disconnect Instrument Pin	Disconnect Instrument from UUT pin	
Disconnect MpPin MpPin	Disconnect MacPanel pin from another MacPanel pin	
Disconnect Pin Pin	Disconnect UUT pin from another UUT pin	
Disconnect Pin MpPin	Disconnect UUT Pin from MacPanel pin	
Disconnect Trigger Instrument	Disconnect trigger from instrument	
Disconnect Trigger MpPin	Disconnect Trigger from MacPanel pin	

Command	Description
Disconnect Trigger Pin	Disconnect Trigger pin from UUT pin
Disconnect Trigger Trigger	Disconnect Trigger from Trigger
Reset All	Reset all boards (LF and HF) along with any RTMs and SRs.
Setup	
Setup Instrument Name	Set instrument name
Setup Instrument PreferredBus	Sets a preferred bus to be used in connecting to a particular instrument
Setup Instrument Map	Maps instrument to a specific input channel (located on the RTM for an LF board, or on the HF board itself)
	The instrument name is also set in this command.
Setup Log Clear	Clears the SwitchEasy Windows event log
Setup Log On	Turns the SwitchEasy Windows event logging on
Setup Log Off	Turns the SwitchEasy Windows event logging off
Setup Pin Group	Maps UUT pins to a UUT pin group
Setup Pin Map	Maps UUT pin to a specific MacPanel pin
Setup Pin Remove	Remove UUT or MacPanel pin from mapping
Setup State MpPin Analog	Sets the pin state of a MacPanel pin to analog
Setup State MpPin Digital	Sets the pin state of a MacPanel pin to digital
Setup State MpPin Hybrid	Sets the pin state of a MacPanel pin to hybrid (analog and digital)
Setup State MpPin Null	Sets the pin state of a MacPanel pin to none
Setup State Pin Analog	Sets the pin state of a UUT pin or pin group to analog
Setup State Pin Digital	Sets the pin state of a UUT pin or pin group to digital
Setup State Pin Hybrid	Sets the pin state of a UUT pin or pin group to hybrid
Setup State Pin Null	Sets the pin state of a UUT pin or pin group to none
Setup Trigger Name	Set trigger name
Setup Trigger Map	Maps trigger to a specific input channel (located on the RTM)
	The trigger name is also set in this command.
Setup Dio Connection	Maps a group of 16 DIO channels to a specific LF board
<u>Get</u>	
Get Instrument Name	Get instrument's name
Get Instrument PreferredBus	Get instrument's preferred bus
Get MpPin Count Lf	Return number of LF channels
Get MpPin Count Hf	Return number of HF channels
Get MpPin Column	Returns the MacPanel column (A, B, C, or D) that is associated with a specified MacPanel pin
Get MpPin Tier	Returns the MacPanel Tier (A or B) that is associated with a specified MacPanel pin
Get MpPin DioChannel	Returns the DIO channel number (0-based) that is mapped to a MacPanel

Command	Description
	pin
Get MpPin From Name	Returns MacPanel pin from a given pin name
Get MpPin From Position	Returns MacPanel pin from physical location specified by MacPanel Slot, Tier, Column, and Row
Get MpPin From MuxPosition	Returns MacPanel pin from mux location specified by slot, mux group (A-P), and mux channel (1-16)
Get MpPin Name	Returns the MacPanel Pin Name
Get MpPin Row	Returns the MacPanel Row location for a given MacPanel pin
Get MpPin Type	Returns a MacPanel's slot type (LF or HF)
Get MpPin MuxGroup	Return Mux Group for specified MacPanel pin
Get MpPin MuxChannel	Return Mux Channel for specified MacPanel pin
Get Pin Count	Returns number of UUT pins.
Get Pin DioChannel	Returns the DIO channel mapped to a specified UUT pin
Get Pin IsGroup	Returns True if the specified pin is a UUT pin group.
Get Pin MpPin	Returns the MacPanel pin mapped to the specified UUT pin
Get Pin MpSlot	Returns the MacPanel slot mapped to the specified UUT pin
Get Pin Name	Returns name associated with UUT pin or group
Get Pin Type	Returns a UUT pin slot type (LF or HF)
Get Pin Group Count	Returns number of UUT pin groups.
Get Pin Group Pins	Returns the array of children UUT pins.
Get Pin Group PinsCount	Returns number of children UUT pins.
Get Pin Group NextPin	Return next UUT pin is available, otherwise returns empty string.
Get Pin Group Pin	Returns name or id of the specified child UUT pin given the pin index
Get Relay Count	Returns the total number of relay openings/closures that have occurred for a specified block (board, RTM or SR)
	The count for each relay is accumulated throughout the life of a board
Get Relay States	Returns the state of each relay of a specified block (board, RTM or SR)
	The index of an array element specifies its relay designation minus 1.
	For example, index 0 corresponds with relay K1, index 256 corresponds with relay K257.
Get Trigger Name	Returns trigger pin name
Get Connections State	Returns the current connection status of the switching system
	All types or a type (instrument, trigger, or pin) of connection can be specified
Get Slot Information	Return True if SW card is installed at the specified slot, also return slot type LF/HF, and whether RTM and SR are present.
Panel	Shows the Switch Easy Panel
<u>Utility</u>	

Command	Description
Utility BIT Abort	Aborts the Built In Test
Utility BIT GetStatus	Returns Built in Test Status
Utility BIT Run	Starts a Built In Test
Utility Interrupt Disable	Disable PCI interrupt.
Utility Interrupt Resume	Resume PCI interrupt.
Utility Interrupt Reset	Reset interrupt source.
Utility Interrupt Setup	Configures the behavior of the interrupts.
Utility PIO Set Output Data	Set the PIO Output Data
Utility PIO Set Output Enable	Set the PIO Output Enable
Utility PIO Get Input Data	Reads the PIO Input
Utility PIO Get Output Data	Returns the PIO Output Data
Utility PIO Get Output Enable	Returns the PIO Output Enable

Table 4-1: Switch Easy driver commands

SwitchEasy Connect/Disconnect Commands

From the Connect/Disconnect commands the following connections types can be made:

Instrument	Test Station Instruments, includes Digital Multimeter (DMM), Source Measurement Unit (SMU), Digital Storage Oscilloscope (Scope), Arbitrary Waveform Generator (Arb), Supported Test Station Instruments connections are enumerated under enumSeInstruments.
Pin	Pin is the equivalent of a named MpPin/Slot, users must define Pin characteristics before using (see Setup/Pin/Map)
MpPin	MacPanel Pin of the Gx6256 (LF) and Gx6192 (HF). Switchable MpPin are enumerated under enumSeMpPin.
Trigger	Some of the Test Station Instruments have connections for indicating an event or starting a process. Supported Trigger interfaces are enumerated under enumSeTrig.
Digital	Digital connections are from the Gx5964 (DIO).

Table 4-2: Connect / Disconnect Commands, Connections Types

Once the "to/from" connections types are defined, specific connections details can be added.

Next, the choice of internal bus(es) can be defined (Bus 0 to Bus 15 or default). Note "default" allows Switch Easy to choose the Bus.

Finally, the choice of routing rules can be defined (note switching rules can be ORed). The choices are:

aSeRuleDefaultDefault: No multiple connections, no hybrid connections, no auto-disconnect, bleed on disconnect, no bleed on disconnect, use main channel

aSeRuleAllowMuxMultiConnect: Allow multiple channels within the same mux group

aSeRuleAllowMultiConnect: Allow multiple items (Pin, Instrument, Trigger) connections

aSeRuleHybrid: Allow digital and analog connections together

aSeRuleAlternate: Connection to Alternate channel (LF pins only)

aSeRuleAlternate2: For commands with two pins, Applied to second pin, connection to Alternate channel (LF pins only)

aSeRuleConnectBleedInhibit: Disable bleeding during connection

aSeRuleDisconnectBleedEnable: Enable bleeding on disconnection

aSeRuleAutoDisconnectMpPin: Auto disconnect connected MacPanel pin before connect to a new MacPanel pin aSeRuleAllowConnectMatrixInput: Allow connect matrix input when connecting HF pins from different tiers

within the same board.

SwitchEasy - Reset

The command **SwitchExec Reset All()** will force all relays to an open state, thereby disconnecting all signal paths.

SwitchEasy Commands Conventions

Use Enum for MacPanel (Slot, Pin), buses, instruments, etc

Use UUT Pin name (string) or ID (user supplied enum constant) mapped to MacPanel Pin for commands

Use of optional Parameters with default values to avoid entering all parameters

Programming Examples

Mapping pins and pin groups

Switch Easy allows users to assign names to physical pins. These names can later be used in place of the physical pin designation when calling commands that make or break connections. Switch Easy also allows users to define pin groups, which are collections of assigned pin names.

The following is an example of assigning the name **Data1**, **Data2**, **Data3**, and **Data4** to the physical Mac Panel pins located at Slot 3, Tier A, Row2, Column A, B, C, and D respectively:

```
SwitchExec Setup Pin Map("Data1", 0, aSeMpSlot3, aSeLfA A02) ! Slot3 Tier A, Column A, Row 2
SwitchExec Setup Pin Map("Data2", 1, aSeMpSlot3, aSeLfA B02) ! Slot3 Tier A, Column B, Row 2
SwitchExec Setup Pin Map("Data3", 2, aSeMpSlot3, aSeLfA CO2) ! Slot3 Tier A, Column C, Row 2
SwitchExec Setup Pin Map("Data4", 3, aSeMpSlot3, aSeLfA D02) ! Slot3 Tier A, Column D, Row 2
```

Note that the second (optional) parameter is the unique numerical ID that is associated with the particular mapping.

The following is an example of creating a pin group called **Data Pins** that contains **Data1**, **Data2**, **Data3**, and Data4.

```
SwitchExec Setup Pin Group("Data Pins", {"Data1", "Data2", "Data3", "Data4"})
```

The name **Data Pins** can now be used in other commands to reference the group of four pins.

Making a connection

Switch Easy provides the user with the ability make connections between pins and instruments. The connection commands use a mapped name or a physical location (slot, tier, column and row) to specify a pin. The pin is referred to as a UUT pin when using a mapped name, and a Mac Panel pin when using a physical location.

Switch Easy can make the following types of connections:

Instrument to UUT pin

A predefined instrument resource is connected to a pin which has been previously mapped to a name.

The following is an example of making a connection between the instrument named Arb1 and a mapped pin named Data1:

```
SwitchExec Connect Instrument Pin(aSeInstrumentArb1, "Data1")
```

Instrument to Mac Panel pin

A predefined instrument resource is connected to a pin using its physical location (slot, tier, column, and row).

The following is an example of making a connection between the instrument named Arb1 and the pin physically located in slot 3, on Tier A, Column A, Row 2:

```
SwitchExec Connect Instrument MpPin(aSeInstrumentArb1, aSeMpSlot3, aSeLfA A02, ,
aSeRuleAllowMultiConnect)
```

Note that this particular example specifies a rule (allow multiple connections) when making the connection.

Multiple Instruments to UUT pin

Multiple instrument resources can be connected to the same pin concurrently. This can be accomplished when using the Allow Multiple Connections rule.

The following is an example of creating connections required for a 4-wire measurement resistance measurement:

```
SwitchExec Connect Instrument Pin(aSeInstrumentDmmHi, "Data2")
SwitchExec Connect Instrument Pin(aSeInstrumentDmmSenseHi, "Data2",, aSeRuleAllowMultiConnect)
SwitchExec Connect Instrument Pin(aSeInstrumentDmmLo, "Data3")
SwitchExec Connect Instrument Pin(aSeInstrumentDmmSenseLo, "Data3",, aSeRuleAllowMultiConnect)
```

The instrument resources DmmHi, and DmmSensesHi are both connected to the Data2 pin. The instrument resources **DmmLo** and **DmmSenseLo** are both connected to the **Data2** pin.

Differential Instrument to Mac Panel pin

Instruments that use differential channels (such as a DMM) can be connected to two pins using only one command.

The following is an example of connecting the DMM's differential inputs (DmmHi and DmmLo) to the pin located at Slot 10, Tier A, ColumnA, Row 2, and Slot 10, Tier A, Column B, Row 2:

```
SwitchExec Connect Instrument Differential(aSeInstrumentDmm, aSeMPSlot10, aSeLfA A02,
aSeMPSlot10, aSeLfA B02)
```

UUT pin to UUT pin

One pin can be connected to another pin, without having to connect to an instrument resource.

The following is an example of connecting the **Data4** pin to the **Data3** pin:

```
SwitchExec Connect Pin Pin("Data4", "Data3", , aSeRuleAllowMultiConnect)
```

Note that the Allow Multiple Connections rule must be specified when connecting one pin to another.

Mac Panel pin to Mac Panel pin

One pin can be connected to another pin, without having to connect to an instrument resource.

The following is an example of connecting the pin located at Slot 11, Tier A, Column A, Row 3 to the pin located at Slot 12, Tier A, Column A, Row 3:

```
SwitchExec Connect MpPin MpPin (aSeMPSlot11, aSeLfA A03, aSeMpSlot12, aSeLfA A03, aSeBus3)
```

Disconnecting

Switch Easy allows the user to disconnect pins from instruments, and instruments from all connections.

The following is an example of disconnecting the **Data1** pin from the instrument resrouce **Arb1**:

```
SwitchExec Disconnect Instrument Pin(aSeInstrumentArb1, "Data1")
```

The following is an example of disconnecting the **Arb1** instrument resource from all pins:

```
SwitchExec Disconnect Instrument(aSeInstrumentArb1)
```

58 GX7016 User's Guide

All connections can be removed while still maintaining the current pin mapping by using the following command: SwitchExec Reset All()

Chapter 5 - Function Reference

Introduction

The GX7016 switching subsystem function reference includes low level GX6256/GX6192/RTM/SR functions used to program the digital subsystem components. User should use the SwitchEasy ATEasy command reference to use the digital subsystem. The functions are prefix with the card type they are addressing Gx6256 or Gx6192 followed by the main components that they are addressing (SR for switch router, etc.). The function reference describes the Gx256XXX function similar set is available to the Gx6192XXX and was not included in this chapter since it is identical. The reference chapter is organized in alphabetical order. Each function is presented starting with the syntax of the function, a short description of the function parameters description and type followed by a Comments, an Example (written in C), and a See Also sections.

All function parameters follow the same rules:

Strings are ASCIIZ (null or zero character terminated).

Most function's first parameter is *nHandle* (16-bit integer). This parameter is required required for operating the board and is returned by the **Gx6256Initialize** or the Gx6256InitializeVisa functions. The *nHandle* is used to identify the board when calling a function for programming and controlling the operation of that board.

All functions return a status with the last parameter named *pnStatus*. The *pnStatus* is zero if the function was successful, or less than a zero on error. The description of the error is available using the **GxSWGetErrorString** function or by using a predefined constant, defined in the driver interface files: GXSW.H, GXSW.BAS, GXSW.PAS or GX6256.DRV.

Parameter name are prefixed as follows:

Prefix	Туре	Example
a	Array, prefix this before the simple type.	anArray (Array of Short)
n	Short (signed 16-bit)	nMode
d	Double - 8 bytes floating point	dReading
dw	Double word (unsigned 32-bit)	dwTimeout
1	Long (signed 32-bit)	lBits
p	Pointer. Usually used to return a value. Prefix this before the simple type.	pnStatus
SZ	Null (zero value character) terminated string	szMsg
W	Unsigned short (unsigned 16-bit)	wParam
hwnd	Window handle (32-bit integer).	hwndPanel

Table 5-1: Parameter Prefixes

GX6256/GX6192/GX6009/GX6032 Functions

The following list is a summary of functions available for the GX6256/GX6192/GX6009/GX6032:

Driver Functions	Description
Gx6256BITAbort	Abort currently running BIT test
Gx6256BITGetStatus	Returns BIT status
Gx6256BITRun	Starts BIT test
Gx6256BleedRelayClose	Closes a mux group's bleed relay
Gx6256BleedRelayGetState	Returns the state of a mux group's bleed relay
Gx6256BleedRelayOpen	Opens a mux group's bleed relay
Gx6256GetBoardSummary	Returns the board summary.
Gx6256GetBoardType	Returns the board type.
Gx6256GetRelayCount	Returns the number of relays on a device (board, RTM, or SR)
Gx6256GetRelayStates	Returns the close/open states of all relays on a device (board, RTM, or SR)
Gx6256Initialize	Initializes the driver for the board at the specified slot number. The function returns a handle that can be used with other GX6256 functions to program the board
Gx6256InitializeVisa	Initializes the driver for the specified slot using VISA. The function returns a handle that can be used with other GX6256 functions to program the board.
Gx6256MatrixClose	Closes a matrix relay
Gx6256MatrixGetChannel	Returns a matrix relay's state
Gx6256MatrixOpen	Opens a matrix relay
Gx6256MatrixReset	Resets (opens) all relays in the matrix
Gx6256MatrixInputSelectorClose	Closes a matrix selector relay
Gx6256MatrixInputSelectorGetChannel	Returns a matrix selector relay's state
Gx6256MatrixInputSelectorOpen	Opens a matrix selector relay
Gx6256MuxClose	Close a mux relay
Gx6256MuxGetChannel	Returns a mux relay's state
Gx6256MuxOpen	Open a mux relay
Gx6256MuxReset	Resets (opens) all relays in a mux groups
Gx6256MuxGetSelectorMode	Returns the mux selector mode for a mux group
Gx6256MuxSetSelectorMode	Sets the mux selector mode for a mux group
Gx6256Panel	Opens a virtual panel used to interactively control the GX6256 board.
Gx6256PioGetOutputData	Returns PIO output data
Gx6256PioGetOutputEnable	Returns PIO output enable (tri-state) data
Gx6256PioReadInput	Returns PIO input data

Driver Functions	Description
Gx6256PioSetOutputData	Set PIO output data
Gx6256PioSetOutputEnable	Set PIO output enable (tri-state) data
Gx6256Reset	Opens all the board relays.
Gx6256RtmMatrixClose	Closes a RTM matrix relay
Gx6256RtmMatrixGetChannel	Returns a RTM matrix relay's state
Gx6256RtmMatrixOpen	Opens a RTM matrix relay
Gx6256SrMatrixClose	Closes a SR bus relay
Gx6256SrMatrixGetChannel	Returns a SR bus relay's state
Gx6256SrMatrixOpen	Opens a SR bus relay
GxSWGetErrorString	Returns the error string associated with the specified error number.

Gx6256BITAbort

Purpose

Aborts a running built in test.

Syntax

Gx6256BITAbort (nHandle, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The built in test checks each relay in a specified device for continuity. This function aborts a test that is currently running.

Example

The following example runs the built in test, waits one second, and then aborts the test:

```
Gx6256Initilize (10, FALSE, &nHandle, &nStatus);
Gx6256BITRun (nHandle, GX6256_BIT_MODE_ALL, &nStatus);
sleep(1000);
Gx6256BITAbort (nHandle, &nStatus);
```

See Also

Gx6256BITGetStatus, Gx6256BITRun, GxSWGetErrorString

Gx6256BITGetStatus

Purpose

Aborts a running built in test.

Syntax

Gx6256BITGetStatus (nHandle, pbPass, pszBITResult, nResultMaxLen, pdPercentCompleted, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
pbPass	PBOOL	Returns with the pass/fail status of the built in test. TRUE is pass and FALSE is fail.
pszBITResult	PSTR	Returned string containing the built in test result.
nResultMaxLen	SHORT	Size of the buffer to contain the BIT result.
pdPercentCompleted	PDOUBLE	Return the percentage completed
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The built in test checks each relay in a specified device for continuity. This function returns the percent completed while the test is running. When the test has completed, this function returns the result of the test in the form of a string (**pszBITResult**) and a flag (**pbPass**) that indicates pass or fail.

Example

The following example runs the built in test and then polls the built in test status until it has completed:

```
BOOL bPass;
CHAR szBITResult[1024];
DOUBLE dPercentCompleted;

Gx6256BITRun (nHandle, GX6256_BIT_MODE_ALL, &nStatus);
Gx6256BITGetStatus (nHandle, &bPass, szBITResult, 1024, &dPercentCompleted, &nStatus);
while (dPercentCompleted<100)
{
    printf("BIT Percent Completed = %f %", dPercentCompleted);
    Gx6256BITGetStatus (nHandle, &bPass, szBITResult, 1024, &dPercentCompleted, &nStatus);
}</pre>
```

See Also

Gx6256BITGetStatus, Gx6256BITRun, GxSWGetErrorString

Gx6256BITRun

Purpose

Aborts a running built in test.

Syntax

Gx6256BITRun (nHandle, nMode, pnStatus)

Parameters

Name	Туре	Comments	
nHandle	SHORT	Handle to a GX6256/GX6192 board.	
nMode	SHORT	Selects which BIT test	
		0. GX6256_BIT_MODE_MUX: Test Mux relays only	
		1. GX6256_BIT_MODE_MATRIX: Test Matrix relays only	
		2. GX6256_BIT_MODE_RTM: Test Rear Transition Module relays only (if one is connected)	
		3. GX6256_BIT_MODE_ALL: Test all relays	
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.	

Comments

The built in test checks each relay in a specified device for continuity. When this function is called, the BIT runs asynchronously in the background. The status and progress of the BIT can be checked by calling Gx6256BITGetStatus.

Example

The following example runs the built in test and checks the status until the test has completed:

```
bPass;
CHAR szBITResult[1024];
DOUBLE dPercentCompleted;
Gx6256BITRun (nHandle, GX6256 BIT MODE ALL, &nStatus);
Gx6256BITGetStatus (nHandle, &bPass, szBITResult, 1024, &dPercentCompleted, &nStatus);
while (dPercentCompleted<100)
   printf("BIT Percent Completed = %f %", dPercentCompleted);
   Gx6256BITGetStatus (nHandle, &bPass, szBITResult, 1024, &dPercentCompleted, &nStatus);
```

See Also

Gx6256BITGetStatus, Gx6256BITRun, GxSWGetErrorString

Gx6256BleedRelayClose

Purpose

Closes the bleed relay for a specified mux group

Gx6256BleedRelayClose (nHandle, nMuxGroup, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nMuxGroup	SHORT	Mux Group numbers are:
		0. GX6256_GROUP_A
		1. GX6256_GROUP_B
		2. GX6256_GROUP_C
		3. GX6256_GROUP_D
		4. GX6256_GROUP_E
		5. GX6256_GROUP_F
		6. GX6256_GROUP_G
		7. GX6256_GROUP_H
		8. GX6256_GROUP_I
		9. GX6256_GROUP_J
		10. GX6256_GROUP_K
		11. GX6256_GROUP_L
		12. GX6256_GROUP_M
		13. GX6256_GROUP_N
		14. GX6256_GROUP_O
		15. GX6256_GROUP_P
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

Each mux group has a bleed relay that can be used to bleed the path when making a new connection.

Example

The following example closes the mux group A bleed relay:

Gx6256BleedRelayClose (nHandle, GX6256_GROUP_A, &nStatus);

See Also

Gx6256BleedRelayGetState, Gx6256BleedRelayOpen, GxSWGetErrorString

Gx6256BleedRelayGetState

Purpose

Returns a bleed relay's state

Syntax

Gx6256BleedRelayGetState (nHandle, nMuxGroup, pnState, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nMuxGroup	SHORT	Mux Group numbers are:
		0. GX6256_GROUP_A
		1. GX6256_GROUP_B
		2. GX6256_GROUP_C
		3. GX6256_GROUP_D
		4. GX6256_GROUP_E
		5. GX6256_GROUP_F
		6. GX6256_GROUP_G
		7. GX6256_GROUP_H
		8. GX6256_GROUP_I
		9. GX6256_GROUP_J
		10. GX6256_GROUP_K
		11. GX6256_GROUP_L
		12. GX6256_GROUP_M
		13. GX6256_GROUP_N
		14. GX6256_GROUP_O
		15. GX6256_GROUP_P
pnState	SHORT	Returns the state of a bleed relay
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Gx6256/Gx6192 switching boards contain a matrix.

The Gx6256 matrix connects the mux groups to the global bus lines.

The Gx6192 matrix connects the mux groups to the analog inputs.

Example

The following returns the state of Mux Group A bleed relay state: Gx6256BleedRelayGetState(nHandle, GX6256_GROUP_A, &nState, &nStatus);

See Also

Gx6256 Matrix Close, Gx6256 Matrix Open, GxSWGet Error String

Gx6256BleedRelayOpen

Purpose

Opens the bleed relay for a specified mux group

Gx6256BleedRelayOpen (nHandle, nMuxGroup, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nMuxGroup	SHORT	Mux Group numbers are:
		0. GX6256_GROUP_A
		1. GX6256_GROUP_B
		2. GX6256_GROUP_C
		3. GX6256_GROUP_D
		4. GX6256_GROUP_E
		5. GX6256_GROUP_F
		6. GX6256_GROUP_G
		7. GX6256_GROUP_H
		8. GX6256_GROUP_I
		9. GX6256_GROUP_J
		10. GX6256_GROUP_K
		11. GX6256_GROUP_L
		12. GX6256_GROUP_M
		13. GX6256_GROUP_N
		14. GX6256_GROUP_O
		15. GX6256_GROUP_P
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

Each mux group has a bleed relay that can be used to bleed the path when making a new connection.

Example

The following example opens the mux group A bleed relay:

Gx6256BleedRelayOpen (nHandle, GX6256_GROUP_A, &nStatus);

See Also

Gx6256BleedRelayGetState, Gx6256BleedRelayClose, GxSWGetErrorString

Gx6256GetBoardSummary

Purpose

Returns the board summary.

Syntax

Gx6256GetBoardSummary (nHandle, szSummary, nSumMaxLen, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
szSummary	PSTR	Buffer to contain the returned board info (null terminated) string.
nSumMaxLen	SHORT	Size of the buffer to contain the board info string.
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The GX6256 summary string provides the following data from in the order shown:

Instrument Name (e.g., GX6256)

FPGA version (e.g. 0xA002)

Serial Number (e.g. 62560210)

Example

For example, the returned string looks like the following:

"GX6256 6U High Density 16 16x2 Mux, FPGA-Version:0xA003, S/N 62561234"

See Also

GxSWGetDriverSummary, GxSWGetErrorString

Gx6256GetBoardType

Purpose

Closes a Mux path

Syntax

Gx6256GetBoardType (nHandle, pwBoardType, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
pwBoardType	PWORD	Returns the board's type (0x6256 or 0x6192)
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The GX6256 has two paths, primary and secondary, from mux channels to mux selector.

Example

The following example closes returns the board type:

Gx6256GetBoardType(nHandle, &wBoardType, &nStatus);

See Also

Gx6256GetBoardSummary, GxSWGetErrorString

Gx6256GetRelayCount

Purpose

Returns the relay count associated with all the relays on the specified device

Gx6256GetRelayCount (nHandle, nBlock, padwRelayCount, pnMaxLen, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nBlock	SHORT	The device to read the relay count from
		0. GX6256_BLOCK_BOARD: Read relay count for all relays on the switching board
		 GX6256_BLOCK_RTM: Read relay count for all relays on the connected Rear Transition Module if it exists
		GX6256_BLOCK_SR: Read relay count for all relays on the connected Switching Router if it exists
padwRelayCount	PDWORD	Returns an array containing each relay's cumulative open/close count
pnMaxLen	PSHORT	Size of the array passed into the padwRelayCount parameter
		The function returns the actual number of elements written to the array in this variable as well.
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

Each board, Rear Transition Module, and Switching Router contain many relays. Whenever each relay is opened or closed, the count for the specific relays is incremented and then stored on an onboard EEPROM.

Each element in the relay count array, padwRelayCount, represents the total number of open/close events for the lifetime of a relay. The element index corresponds with the relay designation number minus one. For example, element 0 in the array contains the relay count for the relay designated "K1", element 1 in the array contains the relay count for the relay designated "K2", and so on.

Example

The following example returns the relay count for relay K200 on a rear transition board that is connected to slot 5:

```
SHORT nHandle, nStatus;
DWORD adwRelayCount[256];
Gx6256Initialize(5, &nHandle, &nStatus);
Gx6256GetRelayCount(nHandle, GX6256 BLOCK RTM, adwRelayCount, 256, &nStatus);
printf("Relay K200 has been opened/closed %d times.", adwRelayCount[199]);
```

See Also

Gx6256GetRelayStates, GxSWGetErrorString

Gx6256GetRelayStates

Purpose

Returns the state (open or closed) of each relay on the device specified

Gx6256GetRelayCount (nHandle, nBlock, padwRelayStates, pnMaxLen, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nBlock	SHORT	The device to read the relay count from
		0. GX6256_BLOCK_BOARD: Read relay count for all relays on the switching board
		 GX6256_BLOCK_RTM: Read relay count for all relays on the connected Rear Transition Module if it exists
		GX6256_BLOCK_SR: Read relay count for all relays on the connected Switching Router if it exists
padwRelayStates	PDWORD	Returns an array containing each relay's state (open or closed)
pnMaxLen	PSHORT	Size of the array passed into the padwRelayStates parameter
		The function returns the actual number of elements written to the array in this variable as well.
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

Each board, Rear Transition Module, and Switching Router contain many relays...

Each element in the relay count array, padwRelayCount, represents the current state a relay. The element index corresponds with the relay designation number minus one. For example, element 0 in the array contains the relay state for the relay designated "K1", element 1 in the array contains the relay state for the relay designated "K2", and so on.

Example

The following example returns the relay state for relay K200 on a rear transition board that is connected to slot 5:

```
SHORT nHandle, nStatus;
DWORD adwRelayStates[256];
Gx6256Initialize(5, &nHandle, &nStatus);
Gx6256GetRelayStates(nHandle, GX6256 BLOCK RTM, adwRelayStates, 256, &nStatus);
if (adwRelayStates[199]==0)
   printf("Relay K200 is open");
else
   printf("Relay K200 is closed");
```

See Also

Gx6256GetRelayCount, GxSWGetErrorString

Gx6256Initialize

Purpose

Initializes the driver for the board at the specified slot number. The function returns a handle that can be used with other GX6256 functions to program the board.

Syntax

Gx6256Initialize (nSlot, bSimulation, pnHandle, pnStatus)

Parameters

Name	Туре	Comments
nSlot	SHORT	GX6256/GX6192 board slot number on the PXI bus.
bSimulation	BOOL	Simulation mode flag. Set to TRUE to enable simulation mode.
pnHandle	PSHORT	Returned handle for the board. The handle is set to zero on error and $<\!\!>\!0$ on success.
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Gx6256Initialize function verifies whether or not the GX6256 board exists in the specified PXI slot. The function does not change any of the board settings. The function uses the HW driver to access and program the board.

The Marvin Test Solutions HW device driver is installed with the driver and is the default device driver. The function returns a handle that for use with other Counter functions to program the board. The function does not change any of the board settings.

The specified PXI slot number is displayed by the PXI/PCI Explorer applet that can be opened from the Windows Control Panel. You may also use the label on the chassis below the PXI slot where the board is installed. The function accepts two types of slot numbers:

A combination of chassis number (chassis # x 256) with the chassis slot number. For example 0x105 (chassis 1 slot

Legacy nSlot as used by earlier versions of HW/VISA. The slot number contains no chassis number and can be changed using the **PXI/PCI Explorer** applet (1-255).

The returned handle pnHandle is used to identify the specified board with other GX6256 functions.

Example

The following example initializes two GX6256 boards at slot 10 and 12 with simulation mode disabled.

```
SHORT nHandle1, nHandle2, nStatus;
Gx6256Initilize (10, FALSE, &nHandle1, &nStatus);
Gx6256Initilize (12, FALSE, &nHandle2, &nStatus);
if (nHandle1==0 || nHandle2==0)
   {printf("Unable to Initialize the board")
   return;
}
```

See Also

$Gx6256Reset,\,GxSWGetErrorString$

Gx6256InitializeVisa

Purpose

Initializes the driver for the specified PXI slot using the default VISA provider.

Gx6256InitializeVisa (szVisaResource, bSimulation, pnHandle, pnStatus)

Parameters

Name	Туре	Comments
szVisaResource	LPCTSTR	String identifying the location of the specified board in order to establish a session.
bSimulation	BOOL	Simulation mode flag. Set to TRUE to enable simulation mode.
pnHandle	PSHORT	Returned Handle (session identifier) that can be used to call any other operations of that resource
pnStatus	PSHORT	Returned status: 0 on success, 1 on failure.

Comments

The Gx6256InitializeVisa opens a VISA session to the specified resource. The function uses the default VISA provider configured in your system to access the board. You must ensure that the default VISA provider support PXI/PCI devices and that the board is visible in the VISA resource manager before calling this function.

The first argument szVisaResource is a string that is displayed by the VISA resource manager such as NI Measurement and Automation (NI_MAX). It is also displayed by Marvin Test Solutions PXI/PCI Explorer as shown in the prior figure. The VISA resource string can be specified in several ways as follows:

- Using chassis, slot, for example: "PXI0::CHASSIS1::SLOT5"
- Using the PCI Bus/Device combination, for example: "PXI9::13::INSTR" (bus 9, device 9).
- Using alias, for example: "COUNTER1". Use the PXI/PCI Explorer to set the device alias.

The function returns a board handle (session identifier) that can be used to call any other operations of that resource. The session is opened with VI_TMO_IMMEDIATE and VI_NO_LOCK VISA attributes. On terminating the application the driver automatically invokes viClose() terminating the session.

Example

The following example initializes a GX6256 boards at PXI bus 5 and device 11 with simulation disabled.

```
SHORT nHandle, nStatus;
Gx6256InitializeVisa ("PXI5::11::INSTR", FALSE, &nHandle, &nStatus);
if (nHandle==0)
   printf("Unable to Initialize the board")
   return;
}
```

See Also

Gx6256Initialize, Gx6256Reset, GxSWGetErrorString

Gx6256MatrixClose

Purpose

Closes a Matrix relay

Syntax

Gx6256MatrixClose (nHandle, nMuxGroup, nInput, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nMuxGroup	SHORT	Mux Group numbers are:
		0. GX6256_GROUP_A
		1. GX6256_GROUP_B
		2. GX6256_GROUP_C
		3. GX6256_GROUP_D
		4. GX6256_GROUP_E
		5. GX6256_GROUP_F
		6. GX6256_GROUP_G
		7. GX6256_GROUP_H
		8. GX6256_GROUP_I
		9. GX6256_GROUP_J
		10. GX6256_GROUP_K
		11. GX6256_GROUP_L
		12. GX6256_GROUP_M
		13. GX6256_GROUP_N
		14. GX6256_GROUP_O
		15. GX6256_GROUP_P
nInput	SHORT	Inputs numbers are 0-15
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Gx6256/Gx6192 switching boards contain a matrix.

The Gx6256 matrix connects the mux groups to the global bus lines.

The Gx6192 matrix connects the mux groups to the analog inputs.

Example

The following example closes input 5 in Mux Group B:

Gx6256MatrixClose(nHandle, GX6256_GROUP_B, 5, &nStatus);

See Also

Gx6256 Matrix Get Channel, Gx6256 Matrix Open, GxSW Get Error String

Gx6256MatrixGetChannel

Purpose

Returns a Matrix relay's state

Syntax

Gx6256MatrixGetChannel (nHandle, nMuxGroup, nInput, pnState, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nMuxGroup	SHORT	Mux Group numbers are:
		0. GX6256_GROUP_A
		1. GX6256_GROUP_B
		2. GX6256_GROUP_C
		3. GX6256_GROUP_D
		4. GX6256_GROUP_E
		5. GX6256_GROUP_F
		6. GX6256_GROUP_G
		7. GX6256_GROUP_H
		8. GX6256_GROUP_I
		9. GX6256_GROUP_J
		10. GX6256_GROUP_K
		11. GX6256_GROUP_L
		12. GX6256_GROUP_M
		13. GX6256_GROUP_N
		14. GX6256_GROUP_O
		15. GX6256_GROUP_P
nInput	SHORT	Inputs numbers are 0-15
pnState	SHORT	Returns the state of a matrix relay
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Gx6256/6192 switching boards contain a matrix.

The Gx6256 matrix connects the mux groups to the global bus lines.

The Gx6192 matrix connects the mux groups to the analog inputs.

Example

The following returns the state of Mux Group A, input 5 connection state: Gx6256MatrixGetChannel(nHandle, GX6256_GROUP_A, 5, &nState , &nStatus);

See Also

Gx6256 Matrix Close, Gx6256 Matrix Open, GxSWGet Error String

Gx6256MatrixOpen

Purpose

Opens a Matrix relay

Syntax

Gx6256MatrixOpen (nHandle, nMuxGroup, nInput, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nMuxGroup	SHORT	Mux Group numbers are:
		0. GX6256_GROUP_A
		1. GX6256_GROUP_B
		2. GX6256_GROUP_C
		3. GX6256_GROUP_D
		4. GX6256_GROUP_E
		5. GX6256_GROUP_F
		6. GX6256_GROUP_G
		7. GX6256_GROUP_H
		8. GX6256_GROUP_I
		9. GX6256_GROUP_J
		10. GX6256_GROUP_K
		11. GX6256_GROUP_L
		12. GX6256_GROUP_M
		13. GX6256_GROUP_N
		14. GX6256_GROUP_O
		15. GX6256_GROUP_P
nInput	SHORT	Inputs numbers are 0-15
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Gx6256/6192 switching boards contain a matrix.

The Gx6256 matrix connects the mux groups to the global bus lines.

The Gx6192 matrix connects the mux groups to the analog inputs.

Example

The following example opens input 5 in Mux Group B:

Gx6256MatrixOpen(nHandle, GX6256_GROUP_B, 5, &nStatus);

See Also

Gx6256 Matrix Get Channel, Gx6256 Matrix Close, GxSWGet Error String

Gx6256MatrixInputSelectorClose

Purpose

Connects inputs to the board matrix

Gx6256MatrixInputSelectorClose (nHandle, nInput, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nInput	SHORT	Inputs numbers are 0-15
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Gx6256/Gx6192 switching boards contain a matrix.

The Gx6256 matrix connects the mux groups to the global bus lines.

The Gx6192 matrix connects the mux groups to the analog inputs.

This function makes the connection between the board matrix and the "inputs" which can be either global bus lines or analog inputs depending on the type of switching card as described above.

Example

The following example connects input 5 to the board matrix:

Gx6256MatrixInputSelectorClose(nHandle, 5, &nStatus);

See Also

Gx6256MatrixInputSelectorGetChannel, Gx6256MatrixInputSelectorOpen, GxSWGetErrorString

Gx6256MatrixInputSelectorGetChannel

Purpose

Returns an matrix input connection state

Gx6256MatrixInputSelectorGetChannel (nHandle, nMuxGroup, pnState, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nInput	SHORT	Inputs numbers are 0-15
pnState	SHORT	Returns the state of a matrix input connection
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Gx6256/Gx6192 switching boards contain a matrix.

The Gx6256 matrix connects the mux groups to the global bus lines.

The Gx6192 matrix connects the mux groups to the analog inputs.

Example

The following returns the board's matrix input 5 connection state: Gx6256MatrixGetChannel(nHandle, 5, &nState , &nStatus);

See Also

Gx6256MatrixInputSelectorClose, Gx6256MatrixInputSelectorOpen, GxSWGetErrorString

Gx6256MatrixInputSelectorOpen

Purpose

Disconnects inputs to the board matrix

Gx6256MatrixInputSelectorOpen (nHandle, nInput, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nInput	SHORT	Inputs numbers are 0-15
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Gx6256/Gx6192 switching boards contain a matrix.

The Gx6256 matrix connects the mux groups to the global bus lines.

The Gx6192 matrix connects the mux groups to the analog inputs.

This function breaks the connection between the board matrix and the "inputs" which can be either global bus lines or analog inputs depending on the type of switching card as described above.

Example

The following example disconnects input 5 to the board matrix:

Gx6256MatrixInputSelectorOpen(nHandle, 5, &nStatus);

See Also

Gx6256MatrixInputSelectorGetChannel, Gx6256MatrixInputSelectorClose, GxSWGetErrorString

Gx6256MatrixReset

Purpose

Opens all the Mux relays that are connected to a specified mux group.

Gx6256MatrixReset (nHandle, nMuxGroup, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nMuxGroup	SHORT	Mux Group numbers are:
		0. GX6256_GROUP_A
		1. GX6256_GROUP_B
		2. GX6256_GROUP_C
		3. GX6256_GROUP_D
		4. GX6256_GROUP_E
		5. GX6256_GROUP_F
		6. GX6256_GROUP_G
		7. GX6256_GROUP_H
		8. GX6256_GROUP_I
		9. GX6256_GROUP_J
		10. GX6256_GROUP_K
		11. GX6256_GROUP_L
		12. GX6256_GROUP_M
		13. GX6256_GROUP_N
		14. GX6256_GROUP_O
		15. GX6256_GROUP_P
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

This function opens all Matrix relays within a column that represents a specified mux group.

Example

The following resets Mux group B column in the matrix.

Gx6256MatrixReset (nHandle, GX6256_GROUP_B, &nStatus);

See Also

Gx6256Initialize, Gx6256MuxReset, GxSWGetErrorString

Gx6256MuxClose

Purpose

Closes a Mux path

Syntax

Gx6256MuxClose (nHandle, nMuxGroup, nChannel, nPath, nMuxMode, pnStatus)

Parameters

Name	Туре	Comments		
nHandle	SHORT	Handle to a GX6256/GX6192 board.		
nMuxGroup	SHORT	Mux Group numbers are:		
		0. GX6256_GROUP_A		
		1. GX6256_GROUP_B		
		2. GX6256_GROUP_C		
		3. GX6256_GROUP_D		
		4. GX6256_GROUP_E		
		5. GX6256_GROUP_F		
		6. GX6256_GROUP_G		
		7. GX6256_GROUP_H		
		8. GX6256_GROUP_I		
		9. GX6256_GROUP_J		
		10. GX6256_GROUP_K		
		11. GX6256_GROUP_L		
		12. GX6256_GROUP_M		
		13. GX6256_GROUP_N		
		14. GX6256_GROUP_O		
		15. GX6256_GROUP_P		
nChannel	SHORT	Channel numbers are 0-15 for GX6256 and 0-11 for GX6192		
nPath	SHORT	Mux Paths are (Only applicable to GX6256):		
		0. GX6256_PATH_PRIMARY: The primary path is used to make the connection		
		1. GX6256_PATH_SECONDARY: The secondary path is used to make the connection		
nMuxMode	SHORT	Mux connection modes are:		
		 GX6256_MUX_MODE_SINGLE_CONNECTION: Only one mux channel can be closed at a time 		
		 GX6256_MUX_MODE_MULTI_CONNECTION: Multiple mux channels can be closed at the same time 		
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.		

Comments

The GX6256 has two paths, primary and secondary, from mux channels to mux selector.

Example

The following example closes the channel 5 in Mux Group B using the primary path and multiple connection mode: Gx6256MuxClose(nHandle, GX6256_GROUP_A, 5, GX6256_PATH_PRIMARY, GX6256_MUX_MODE_MULTI_CONNECTION, &nStatus);

See Also

Gx6256 Mux Get Channel, Gx6256 Mux Open, GxSW Get Error String

Gx6256MuxGetChannel

Purpose

Closes a Mux path

Syntax

 $\textbf{Gx6256MuxGetChannel} \ (\textit{nHandle}, \textit{nMuxGroup}, \textit{nChannel}, \textit{nPath}, \textit{pnState}, \textit{pnStatus})$

Parameters

Name	Туре	Comments	
nHandle	SHORT	Handle to a GX6256/GX6192 board.	
nMuxGroup	SHORT	Mux Group numbers are:	
		0. GX6256_GROUP_A	
		1. GX6256_GROUP_B	
		2. GX6256_GROUP_C	
		3. GX6256_GROUP_D	
		4. GX6256_GROUP_E	
		5. GX6256_GROUP_F	
		6. GX6256_GROUP_G	
		7. GX6256_GROUP_H	
		8. GX6256_GROUP_I	
		9. GX6256_GROUP_J	
		10. GX6256_GROUP_K	
		11. GX6256_GROUP_L	
		12. GX6256_GROUP_M	
		13. GX6256_GROUP_N	
		14. GX6256_GROUP_O	
		15. GX6256_GROUP_P	
nChannel	SHORT	Channel numbers are 0-15 for GX6256 and 0-11 for GX6192	
nPath	SHORT	Mux Paths are (Only applicable to GX6256):	
		0. GX6256_PATH_PRIMARY: The primary path is used to make the connection	
		1. GX6256_PATH_SECONDARY: The secondary path is used to make the connection	
pnState	SHORT	Returns the state of a Mux connection	
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.	

Comments

The GX6256 has two paths, primary and secondary, from mux channels to mux selector.

Example

The following returns the state of Mux Group A, channel 5 connection state: Gx6256MuxGetChannel(nHandle, GX6256_GROUP_A, 5, &nState , &nStatus);

See Also

Gx6256 Mux Close, Gx6256 Mux Open, GxSW Get Error String

Gx6256MuxOpen

Purpose

Opens a Mux path

Syntax

Gx6256MuxOpen (nHandle, nMuxGroup, nChannel, nPath, pnStatus)

Parameters

Name	Type	Comments		
nHandle	SHORT	Handle to a GX6256/GX6192 board.		
nMuxGroup	SHORT	Mux Group numbers are:		
		0. GX6256_GROUP_A		
		1. GX6256_GROUP_B		
		2. GX6256_GROUP_C		
		3. GX6256_GROUP_D		
		4. GX6256_GROUP_E		
		5. GX6256_GROUP_F		
		6. GX6256_GROUP_G		
		7. GX6256_GROUP_H		
		8. GX6256_GROUP_I		
		9. GX6256_GROUP_J		
		10. GX6256_GROUP_K		
		11. GX6256_GROUP_L		
		12. GX6256_GROUP_M		
		13. GX6256_GROUP_N		
		14. GX6256_GROUP_O		
		15. GX6256_GROUP_P		
nChannel	SHORT	Channel numbers are 0-15 for GX6256 and 0-11 for GX6192		
nPath	SHORT	Mux Paths are (Only applicable to GX6256):		
		0. GX6256_PATH_PRIMARY: The primary path is used to make the connection		
		1. GX6256_PATH_SECONDARY: The secondary path is used to make the connection		
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.		

Comments

The GX6256 has two paths, primary and secondary, from mux channels to mux selector.

Example

The following example opens the primary path for channel 5 in Mux Group B: Gx6256MuxOpen(nHandle, GX6256_GROUP_A, 5, GX6256_PATH_PRIMARY, &nStatus);

See Also

 $Gx6256 Mux Get Channel, \, Gx6256 Mux Close, \, GxSW Get Error String$

Gx6256MuxReset

Purpose

Opens all the Mux relays.

Syntax

Gx6256MuxReset (nHandle, nMuxGroup, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nMuxGroup	SHORT	Mux Group numbers are:
		0. GX6256_GROUP_A
		1. GX6256_GROUP_B
		2. GX6256_GROUP_C
		3. GX6256_GROUP_D
		4. GX6256_GROUP_E
		5. GX6256_GROUP_F
		6. GX6256_GROUP_G
		7. GX6256_GROUP_H
		8. GX6256_GROUP_I
		9. GX6256_GROUP_J
		10. GX6256_GROUP_K
		11. GX6256_GROUP_L
		12. GX6256_GROUP_M
		13. GX6256_GROUP_N
		14. GX6256_GROUP_O
		15. GX6256_GROUP_P
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

This function opens all Mux and Matrix relays. If an RTM or SR is connected to the board, then the relays on those devices are also opened.

Example

The following resets Mux group B.

```
Gx6256MuxReset (nHandle, GX6256_GROUP_B, &nStatus);
```

See Also

Gx6256Initialize, Gx6256MuxReset, GxSWGetErrorString

Gx6256MuxGetSelectorMode

Purpose

Returns a mux group's selector mode.

 $\textbf{Gx6256MuxGetSelectorMode} \ (\textit{nHandle, nMuxGroup, pnSelectorMode, pnStatus})$

the board.

Parameters

Name	Туре	Comments	
nHandle	SHORT	Handle to a GX6256/GX6192 board.	
nMuxGroup	SHORT	Mux Group numbers are:	
		0. GX6256_GROUP_A	
		1. GX6256_GROUP_B	
		2. GX6256_GROUP_C	
		3. GX6256_GROUP_D	
		4. GX6256_GROUP_E	
		5. GX6256_GROUP_F	
		6. GX6256_GROUP_G	
		7. GX6256_GROUP_H	
		8. GX6256_GROUP_I	
		9. GX6256_GROUP_J	
		10. GX6256_GROUP_K	
		11. GX6256_GROUP_L	
		12. GX6256_GROUP_M	
		13. GX6256_GROUP_N	
		14. GX6256_GROUP_O	
		15. GX6256_GROUP_P	
pnSelectorMode	PSHORT	Mux selector modes are:	
		0. GX6256_SELECTOR_MODE_NONE: The Mux, Matrix, and external lines are not connected to each other.	
		1. GX6256_SELECTOR_MODE_MATRIX_ONLY: The Mux and Matrix are allowed to connect but the external lines are disconnected.	
		2. GX6256_SELECTOR_MODE_EXTERNAL_ONLY: The Mux and the external lines are allowed to connect to each other.	
		3. GX6256_SELECTOR_MODE_MATRIX_AND_EXTERNAL: The Mux is allowed to connect to the Matrix and external lines.	
		4. GX6256_SELECTOR_MODE_MATRIX_ISOLATED: The Mux is not	

allowed to connect to the selector, effectively making it isolated from the rest of

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

Example

The following returns Mux group B selector mode:

```
SHORT nSelectorMode;
Gx6256MuxGetSelectorMode(nHandle, GX6256_GROUP_B, &nSelectorMode, &nStatus);
```

See Also

Gx6256 MuxSet Selector Mode, GxSWGet Error String

Gx6256MuxSetSelectorMode

Purpose

Sets a mux group's selector mode.

Gx6256MuxSetSelectorMode (nHandle, nMuxGroup, nSelectorMode, pnStatus)

Parameters

Name	Туре	Comments	
nHandle	SHORT	Handle to a GX6256/GX6192 board.	
nMuxGroup	SHORT	Mux Group numbers are:	
1		0. GX6256_GROUP_A	
		1. GX6256_GROUP_B	
		2. GX6256_GROUP_C	
		3. GX6256_GROUP_D	
		4. GX6256_GROUP_E	
		5. GX6256_GROUP_F	
		6. GX6256_GROUP_G	
		7. GX6256_GROUP_H	
		8. GX6256_GROUP_I	
		9. GX6256_GROUP_J	
		10. GX6256_GROUP_K	
		11. GX6256_GROUP_L	
		12. GX6256_GROUP_M	
		13. GX6256_GROUP_N	
		14. GX6256_GROUP_O	
		15. GX6256_GROUP_P	
nSelectorMode	SHORT	Mux selector modes are:	
	0.	0. GX6256_SELECTOR_MODE_NONE: The Mux, Matrix, and external lines are not connected to each other.	
		 GX6256_SELECTOR_MODE_MATRIX_ONLY: The Mux and Matrix are allowed to connect but the external lines are disconnected. 	
		2. GX6256_SELECTOR_MODE_EXTERNAL_ONLY: The Mux and the external lines are allowed to connect to each other.	

3. GX6256_SELECTOR_MODE_MATRIX_AND_EXTERNAL: The Mux is

4. GX6256_SELECTOR_MODE_MATRIX_ISOLATED: The Mux is not allowed to connect to the selector, effectively making it isolated from the rest of the

allowed to connect to the Matrix and external lines.

board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

Example

The following sets Mux group B selector mode to matrix only:

Gx6256MuxSetSelectorMode(nHandle, GX6256_GROUP_B, GX6256_SELECTOR_MODE_MATRIX_ONLY, &nStatus);

See Also

Gx6256 MuxGet Selector Mode, GxSWGet Error String

Gx6256Panel

Purpose

Opens a virtual panel used to interactively control the GX6256 board.

Svntax

Gx6256Panel (pnHandle, hwndParent, nMode, phwndPanel, pnStatus)

Parameters

Name	Туре	Comments
panhandle	PSHORT	Handle to a $GX6256/GX6192$ board. This number may be zero if the board is to be initialized by the panel window.
hwndParent	DWORD	Sets the panel parent window handle. A value of 0 sets the desktop as the parent window.
nMode	SHORT	The mode in which the panel main window is created. 0 for modeless and 1 for modal window.
phwndPanel	PDWORD	Returned window handle for the panel (for modeless panel only).
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The function is used to create the panel window. The panel window may be open as a modal or a modeless window, depending on the *nMode* parameters.

If the mode is set to modal dialog (nMode=1), the panel will disable the parent window (hwndParent) and the function will return only after the user closed the window. In that case the pnHandle may return the handle created by the user using the panel Initialize dialog. This handle may be used when calling other GX6256 functions.

If a modeless dialog was created (nMode=0), the function returns immediately after creating the panel window, returning the window handle to the panel - phwndPanel. It is the responsibility of the calling program to dispatch window messages to this window, so that the window can respond to messages.

Example

The following example opens the panel in modal mode:

```
DWORD dwPanel;
SHORT nHandle=0, nStatus;
...
Gx6256Panel (&nHandle, 0, 1, &dwPanel, &nStatus);
```

See Also

Gx6256Initialize, GxSWGetErrorString

Gx6256PioGetOutputData

Purpose

Returns the PIO output value from the output register

Gx6256PioGetOutputData (nHandle, pucOutputData, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
pucOutputData	PBYTE	Bit field that represents the 8 output lines of the PIO
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

This function controls the output (driving) data of the 8 line PIO device.

Example

The following example returns the output data register value:

```
BYTE ucOuputData;
Gx6256PioGetOutputData (nHandle, &ucOutputData, &nStatus);
```

See Also

Gx6256PioGetOutputData, Gx6256PioSetOutputEnable, Gx6256PioGetOutputEnable, Gx6256PioGetOutputGxSWGetErrorString

Gx6256PioGetOutputEnable

Purpose

Returns the PIO output enable (tri-state) value of the output register

Gx6256PioGetOutputEnable (nHandle, pucOutputEnable, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
pucOutputEnable	PBYTE	Bit field that represents the 8 enable (tri-state) control lines of the PIO
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

This function controls the tri-state data of the 8 line PIO device.

Example

The following example returns the output enable (tri-state) control data:

BYTE ucOutputEnable Gx6256PioGetOutputEnable (nHandle, &ucOutputEnable, &nStatus);

See Also

Gx6256PioSetOutput Enable, Gx6256PioSetOutput Data, Gx6256PioGetOutput Data, GxSWGetErrorString Gx6256PioSetOutput Data, Gx6256Pi

Gx6256PioReadInput

Purpose

Reads PIO sampled value from input register

Gx6256PioReadInput(nHandle, pucInputData, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
pucInputData	PBYTE	Bit field that represents the 8 input lines of the PIO
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

This function reads the last sampled value from the input register.

Example

The following example reads all 8 input lines from the PIO:

BYTE ucInputData; Gx6256PioReadINput (nHandle, &ucInputData &nStatus);

See Also

 $Gx6256PioSetOutputData\ ,\ Gx6256PioSetOutputData\ ,\ Gx6256PioSetOutputEnable,$ Gx6256PioGetOutputEnable, GxSWGetErrorString

Gx6256PioSetOutputData

Purpose

Writes PIO output value to output register

Gx6256PioGetOutputData (nHandle, ucOutputData, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
ucOutputData	BYTE	Bit field that represents the 8 output lines of the PIO
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

This function controls the output (driving) data of the 8 line PIO device.

Example

The following example sets all 8 IO lines to generate a logic HI:

```
Gx6256PioSetOutputEnable (nHandle, 0xFF &nStatus);
Gx6256PioSetOutputData (nHandle, 0xFF &nStatus);
```

See Also

Gx6256PioGetOutputData, Gx6256PioSetOutputEnable, Gx6256PioGetOutputEnable, Gx6256PioGetOutputGxSWGetErrorString

Gx6256PioSetOutputEnable

Purpose

Writes PIO output enable (tri-state) value to the output register

 $\textbf{Gx6256PioSetOutputEnable} \ (\textit{nHandle}, \ \textit{ucOutputEnable}, \ \textit{pnStatus})$

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
ucOutputEnable	BYTE	Bit field that represents the 8 enable (tri-state) control lines of the PIO
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

This function controls the tri-state data of the 8 line PIO device.

Example

The following example sets all 8 lines to output enabled:

Gx6256PioSetOutputEnable (nHandle, 0xFF, &nStatus);

See Also

Gx6256PioGetOutputEnable, Gx6256PioSetOutputData, Gx6256PioGetOutputData, GxSWGetErrorString

Gx6256Reset

Purpose

Opens all the board relays.

Syntax

Gx6256Reset (nHandle, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

This function opens all Mux and Matrix relays. If an RTM or SR is connected to the board, then the relays on those devices are also opened.

Example

The following example initializes the driver and then resets the board.

```
Gx6256Initilize (10, FALSE, &nHandle, &nStatus);
if (nStatus < 0)
   return nStatus;// return error
Gx6256Reset (nHandle, &nStatus);
```

See Also

Gx6256Initialize, GxSWGetErrorString

Gx6256RtmMatrixClose

Purpose

Closes a Matrix relay on the rear transition module

Gx6256RtmMatrixClose (nHandle, nChannel, nGlobalBusLine, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nChannel	SHORT	Instrument channels (0-31)
n Global Bus Line	SHORT	Global Bus line (0-15)
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The rear transition module contains a matrix that connects instrument inputs to global bus lines (on the backplane).

Example

The following example closes the channel 5 and global bus line 15:

Gx6256RtmMatrixClose(nHandle, 5, 15, &nStatus);

See Also

Gx6256RtmMatrixGetChannel, Gx6256RtmMatrixOpen, GxSWGetErrorString

Gx6256RtmMatrixGetChannel

Purpose

Returns a rear transition board Matrix relay's state

Gx6256RtmMatrixGetChannel (nHandle, nChannel, nGlobalBusLine, pnState, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nChannel	SHORT	Instrument channels (0-31)
nGlobal Bus Line	SHORT	Global Bus line (0-15)
pnState	SHORT	Returns the state of a rear transition module matrix relay
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The rear transition module contains a matrix that connects instrument inputs to global bus lines (on the backplane).

Example

The following returns the state of channel 5, global bus line 15 connection state: Gx6256RtmMatrixGetChannel(nHandle, 5, 15, &nState , &nStatus);

See Also

Gx6256RtmMatrixClose, Gx6256RtmMatrixOpen, GxSWGetErrorString

Gx6256RtmMatrixOpen

Purpose

Opens a Matrix relay on the rear transition module

Gx6256RtmMatrixOpen (nHandle, nChannel, nGlobalBusLine, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nChannel	SHORT	Instrument channels (0-31)
nGloblBusLine	SHORT	Global Bus line (0-15)
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The rear transition module contains a matrix that connects instrument inputs to global bus lines (on the backplane).

Example

The following example opens the channel 5 and global bus line 15:

Gx6256RtmMatrixOpen (nHandle, 5, 15, &nStatus);

See Also

Gx6256RtmMatrixGetChannel, Gx6256RtmMatrixClose, GxSWGetErrorString

Gx6256SrBusClose

Purpose

Makes a switch router connection between switching boards

Gx6256SrBusClose (nHandle, nGlobalBusLine, nSlot, pnStatus)

Parameters

Name	Туре	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nGlobalBusLine	SHORT	Global Bus line (0-15)
nSlot	SHORT	Slot number (1-9)
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Switching router routes the 16 lines of the global bus between the slots.

Example

The following example connects the switch boards from slot 2 and slot 3 via global bus line 5:

```
Gx6256Initialize(2, FALSE, &nHandle1, &nStatus);
Gx6256Initialize(3, FALSE, &nHandle2, &nStatus);
Gx6256SrBusClose(nHandle1, 5, 1, &nStatus);
Gx6256SrBusClose(nHandle2, 5, 2, &nStatus);
```

See Also

Gx6256SrBusGetChannel, Gx6256SrBusOpen, GxSWGetErrorString

Gx6256SrBusGetChannel

Purpose

Returns a switch router connection state between switching boards

Gx6256SrBusGetChannel (nHandle, nGlobalBusLine, nSlot, pnState, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nGlobal Bus Line	SHORT	Global Bus line (0-15)
nSlot	SHORT	Slot number (1-9)
pnState	PSHORT	Returns the state of a rear transition module matrix relay
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The Switching router routes the 16 lines of the global bus between the slots.

Example

The following returns the state of channel 5, global bus line 15 connection state: Gx6256RtmMatrixGetChannel(nHandle, 5, 15, &nState , &nStatus);

See Also

Gx6256SrBusClose, Gx6256SrBusOpen, GxSWGetErrorString

Gx6256SrBusOpen

Purpose

Opens a Matrix relay on the rear transition module

Gx6256SrBusOpen (nHandle, nGlobalBusLine, nSlot, pnStatus)

Parameters

Name	Type	Comments
nHandle	SHORT	Handle to a GX6256/GX6192 board.
nGloblBusLine	SHORT	Global Bus line (0-15)
nSlot	SHORT	Slot number (1-9)
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The rear transition module contains a matrix that connects instrument inputs to global bus lines (on the backplane).

Example

The following example disconnects the switch boards from slot 2 and slot 3 via global bus line 5:

```
Gx6256Initialize(2, FALSE, &nHandle1, &nStatus);
Gx6256Initialize(3, FALSE, &nHandle2, &nStatus);
Gx6256SrBusOpen(nHandle1, 5, 1, &nStatus);
Gx6256SrBusOpen(nHandle2, 5, 2, &nStatus);
```

See Also

Gx6256SrBusGetChannel, Gx6256SrBusClose, GxSWGetErrorString

GxSWGetErrorString

Purpose

Returns the error string associated with the specified error number.

Svntax

GxSWGetErrorString (nError, pszMsg, nErrorMaxLen, pnStatus)

Parameters

Name	Туре	Comments
nError	SHORT	Error number as returned by the <i>pnStatus</i> of any GXSW function. See table below for possible error numbers values. The error number should be a negative number, otherwise the function returns the "No error has occurred" string.
pszMsg	LPSTR	Buffer containing the returned error string (null terminated string).
nErrorMaxLen	SHORT	Size of the buffer <i>pszMsg</i> .
pnStatus	PSHORT	Returned status: 0 on success, negative number on failure.

Comments

The function returns the error string associated with the nError as returned from other driver functions.

This function returns error value or 0 on success.

The following table displays the possible error values; not all errors apply to this board type:

Resource Errors

- -1 Cant open hw
- -2 Board not exist
- -3 Wrong board
- -4 Slot not configuration
- -5 Unable register device
- -6 Unable allocate device resource
- -7 Unable allocate memory
- -8 Unable create panel
- -9 Unable to get timer
- -10 Board invalid Eeprom
- -11 Not in calibration mode
- -12 Not calibrated
- -13 Err function not supported
- -14 Not MTS board
- -15 Unable to open file
- -16 Error file not exist

- -17 Error mode not supported by slot
- -18 Not PXI board
- -19 Not PCI board

Parameter Errors

- -20 Invalid error
- -21 Invalid parameter
- -22 Invalid slot
- -23 Invalid handle
- -24 Invalid string length
- -25 Invalid mode
- -26 Parameter out of range
- -27 File extension not supported
- -28 Invalid chassis number
- -29 Invalid calibration time stamp

VISA error

- -30 Load DLL error
- -31 Open default resource manager error
- -32 Open error
- -33 Get attribute error
- -34 VI-In error
- -35 Memory map error

Misc error

- -37 Sync create
- -38 Sync timeout
- -39 Lvrt unsupported
- -40 License error
- -41 Event enable failed
- -42 Event disable failed
- -43 Event wait timeout
- -44 Event wait error
- -45 DMA mem alloc failed
- -46 Error DMA mem un map
- -47 Error DMA mem free
- -48 Error checksum

Bult In Test error

-50 BIT adaptor not connected

- -51 BIT comparator
- -52 BIT close open
- -53 BIT close column
- -54 BIT switch other
- -55 BIT partial

Board Errors/Warnings

- -60 Error closed loop
- -61 Invalid relay number
- -62 Invalid number of relays
- -63 Invalid relays cycles limit
- -64 Invalid relay cycles array size
- -65 Error over limit relay replacement
- -66 Eeprom busy timeout
- -67 Error closed relays over limit
- -68 Error set relays timeout

Board specific parameter error

- -80 Invalid configuration
- -81 Invalid channel
- -82 Invalid bus
- -83 Invalid group
- -84 Invalid row
- -85 Invalid column
- -86 Invalid relay
- -87 Invalid daisy chain mode
- -88 Invalid relay type
- -89 Invalid group mode
- -90 Invalid section
- -91 Invalid path
- -92 Invalid signal type
- -93 Invalid input
- -94 Simulation INI file read error
- -95 Invalid block
- -96 Error bit still running
- -97 Eeprom checksum invalid

Example

The following example initializes the board at slot 3. If the initialization failed the following error string is printed:

```
CHARsz[256];
SHORT nStatus, nHandle;
GX6256Initialize(3, FALSE, &Handle, &Status);
if (nStatus<0)
{ GxSWGetErrorString(nStatus, sz, sizeof sz, &nStatus);
  printf(sz);// print the error string return;
```

Index

A	Gx6256BITGetStatus	63
About Page26	Gx6256BITRun	64
Accessories	Gx6256BleedRelayClose	65
Architecture	Gx6256BleedRelayGetState	66
ATEasy29	Gx6256BleedRelayOpen	68
В	Gx6256GetBoardSummary	69
BIT Page25	Gx6256GetBoardType	70
Board Description1	Gx6256GetRelayCount	71
С	Gx6256GetRelayStates	72
Connectors	Gx6256Initialize	59, 73
Connectors and Accessories36	Gx6256InitializeVisa	30, 75
Connectors and Jumpers34	Gx6256MatrixClose	76
Copyright1	Gx6256MatrixGetChannel	78
Corrupt files	Gx6256MatrixInputSelectorClose	82
D	Gx6256MatrixInputSelectorGetChannel	83
Directories29	Gx6256MatrixInputSelectorOpen	84
Disclaimer1	Gx6256MatrixOpen	80
Driver	Gx6256MatrixReset	85
Directory29	Gx6256MuxClose	86
Files29	Gx6256MuxGetChannel	88
G	Gx6256MuxGetSelectorMode	93
GENASYSi, 3, 4	Gx6256MuxOpen	90
GX60091, 4, 5, 9, 15, 16, 17, 18, 23, 24, 27, 60	Gx6256MuxReset	92
GX60321, 4, 5, 8, 14, 16, 18, 22, 24, 27, 60	Gx6256MuxSetSelectorMode	95
GX6192 1, 4, 5, 7, 8, 9, 10, 12, 13, 16, 18, 20, 24, 25,	Gx6256Panel	97
27, 29, 35, 36, 42, 43, 44, 45, 46, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 76, 78, 80, 82, 83, 84,	Gx6256PioGetOutputData	98
85, 86, 88, 90, 92, 93, 95, 97, 98, 99, 100, 101, 102,	Gx6256PioGetOutputEnable	99
103, 104, 105, 106, 107, 108, 109	Gx6256PioReadInput	100
GX62561, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20, 21, 24, 25, 27, 29, 31, 34, 36, 37, 38, 39, 40, 41, 59,	Gx6256PioSetOutputData	101
60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,	Gx6256PioSetOutputEnable	102
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,	Gx6256Reset	103
102, 103, 104, 105, 106, 107, 108, 109	Gx6256RtmMatrixClose	104
GX6256 Functions60	Gx6256RtmMatrixGetChannel	105
Gx6256BITAbort62	Gx6256RtmMatrixOpen	106

Gx6256SrBusClose107	R
Gx6256SrBusGetChannel108	README.TXT29
Gx6256SrBusOpen109	Relay Count Page24
GX7016i, 1, 3, 4, 5, 8, 9, 10, 18, 29, 47, 59	Reset
GXSW28	S
GXSW.EXE28	Safety and Handling1
GxSWGetErrorString59, 110	Setup28, 29
н	Setup Maintenance
Handle31, 32	Setup-and-Installation27
HF Slot Page20	Side view of the GX62566
HW29, 33	Side view of the GX70165
I	Simulation
If You Need Help1	Slot31, 33
Installation Directories	Specifications
Installation:	SwitchEasy1, 47
J	SwitchEasy Panel48
J237, 42	System
Connector	Directory29
J339, 44	System-Requirements
Connector	Т
J741	Trademarks2
Connector41	TS-323
Jumpers	V
L	Virtual Panel
LF Slot Page19	About Page26
P	BIT Page25
Panel18, 19, 20, 22, 23, 26, 28	Relay Count Page24
PCI	Setup Page19, 22, 23
Plug & Play33	Setup Page20
PXI30, 31, 32, 33	VISA29, 30, 60, 73, 75
PXI/PCI Explorer30, 73, 75	w
	Warranty1